
一、說(shuō)教材(一)教材的特點(diǎn)及在本單元的地位《阿房宮賦》位于人教版老教材《中國(guó)古代詩(shī)歌散文欣賞》第四單元“創(chuàng)造形象,詩(shī)人有別”主題?!栋⒎繉m賦》為晚唐文賦,賦講究鋪陳和聲韻,而本文不但有華美的語(yǔ)言、和諧的聲律,還有深刻的思想內(nèi)涵,本文在本單元中有極高的欣賞價(jià)值。語(yǔ)文教學(xué)大綱中要求學(xué)生“具有初步文學(xué)鑒賞能力和閱讀淺易文言文的能力”。本文從文字、結(jié)構(gòu)和意義等各方面來(lái)說(shuō)都是非常值得我們來(lái)鑒賞的。二、說(shuō)學(xué)情學(xué)生在初中階段已學(xué)過(guò)杜牧的詩(shī)作,對(duì)杜牧其人及其作品的諷諫風(fēng)格已有初步了解。然而本賦篇幅較長(zhǎng),學(xué)生閱讀能力尚淺,難以深刻理解賦文“鋪采摛文”的寫作藝術(shù)。通過(guò)誦讀吟詠、教師點(diǎn)撥,把握本賦的語(yǔ)言風(fēng)格。

一、說(shuō)教材:(一)教材的地位和作用《念奴嬌﹒赤壁懷古》是部編版高中語(yǔ)文教材必修上冊(cè)第9課的課文。它與辛棄疾的《永遇樂(lè)﹒京口北固亭懷古》,李清照的《聲聲慢》共同入選該冊(cè)教材第三單元閱讀古詩(shī)詞,感悟人生這一學(xué)習(xí)專題。本詞是蘇軾的代表作,也是豪放詞的名篇,在古詩(shī)詞教學(xué)中占有重要的地位。優(yōu)美的詩(shī)詞是中華傳統(tǒng)文化的瑰寶,學(xué)習(xí)這些詩(shī)詞的目的在于培養(yǎng)學(xué)生鑒賞古代詩(shī)詞作品的能力,在分析、鑒賞中感悟前人豐饒的情思,博大的智慧,從而提高學(xué)生的人文素養(yǎng),提高文化品味。這首詞寫于元豐五年,是蘇軾被貶黃州游赤鼻磯所作。本詞感情激蕩,意境雄渾壯闊。全詞融寫景、詠史、抒情為一體。通過(guò)學(xué)習(xí),學(xué)生可以獲得一些鑒賞詩(shī)詞的基本要領(lǐng),領(lǐng)略壯闊意境,感受豪放詞風(fēng);同時(shí)學(xué)習(xí)蘇軾在逆境中依然樂(lè)觀曠達(dá)的人生觀。

5、賞析詩(shī)歌:(1)結(jié)合書本注釋,讀懂詩(shī)意。并找出詩(shī)中最能體現(xiàn)“愁”情的詞句。(2)分析疊詞的作用(3)選擇一個(gè)自己有感觸的意象,聯(lián)系你接觸過(guò)的詩(shī)文,小組討論這個(gè)意象在詞中有什么象征意義?以上這些意象,營(yíng)造出了一種怎樣的意境?(設(shè)計(jì)說(shuō)明:高中語(yǔ)文新課程標(biāo)準(zhǔn)重視對(duì)學(xué)生的自主學(xué)習(xí)能力和合作能力的培養(yǎng),結(jié)合考綱對(duì)古代詩(shī)文閱讀的要求,聯(lián)系高考對(duì)詩(shī)歌的語(yǔ)言、形象、表達(dá)技巧和思想情感的考查范圍。我認(rèn)為詩(shī)歌教學(xué)應(yīng)注重把握詩(shī)歌內(nèi)容,領(lǐng)略其藝術(shù)特色,從而體會(huì)其情感。所以我在這一環(huán)節(jié)的問(wèn)題設(shè)置上我以愁情引入,層層遞進(jìn),逐步深入,充分發(fā)揮學(xué)生的主觀能動(dòng)性,培養(yǎng)學(xué)生的合作學(xué)習(xí)能力,讓學(xué)生主動(dòng)參與課堂,學(xué)習(xí)詩(shī)歌賞析步驟,通過(guò)把握詩(shī)歌內(nèi)容,體會(huì)詩(shī)人的哀情。)

四、 學(xué)法指導(dǎo)1、查閱資料,了解詩(shī)人寫這首詩(shī)的處境,通過(guò)知人論世,理解詩(shī)歌。2、反復(fù)誦讀,聯(lián)系具體語(yǔ)境,品味詩(shī)歌的內(nèi)涵,感受詩(shī)歌的意蘊(yùn)。3、欣賞詩(shī)人相關(guān)的其他作品及名言,在理解、感受詩(shī)歌的基礎(chǔ)上,領(lǐng)會(huì)詩(shī)人在詩(shī)歌中傳達(dá)出來(lái)的精神,樹立自我意識(shí)。五、教學(xué)過(guò)程環(huán)節(jié)一 常識(shí)補(bǔ)充1、文學(xué)革命:開始于1917年。它是晚清文學(xué)改良運(yùn)動(dòng)在新的歷史條件下的發(fā)展,是適應(yīng)以思想革命為主要內(nèi)容的新文化運(yùn)動(dòng)而發(fā)生的。是新文化運(yùn)動(dòng)的一個(gè)組成部分,對(duì)封建思想的批判必然地轉(zhuǎn)向?qū)Ψ饨ㄖ髁x文學(xué)的攻擊,反對(duì)文言,提倡白話,反對(duì)舊文學(xué),是提倡新文學(xué)的一場(chǎng)文學(xué)革命運(yùn)動(dòng)。在中國(guó)文學(xué)史上豎起一個(gè)鮮明的界碑,標(biāo)示著古典文學(xué)的結(jié)束,現(xiàn)代文學(xué)的起始。主要從詩(shī)歌、小說(shuō)、戲劇、散文四個(gè)文學(xué)領(lǐng)域開展。2、① 現(xiàn)代詩(shī)歌:指“五四運(yùn)動(dòng)”至中華人民共和國(guó)成立以來(lái)的詩(shī)歌。中國(guó)近現(xiàn)代詩(shī)歌的主體新詩(shī),誕生于“五四”新文化運(yùn)動(dòng)。

(二)整體感知(7分鐘) 讀—讀文見義“新課標(biāo)”要求要在語(yǔ)文教學(xué)中要突出整體感知。古人云:書讀百遍,其義自見。詩(shī)歌學(xué)習(xí)重在誦讀,高中語(yǔ)文新課標(biāo)對(duì)詩(shī)歌閱讀的要求是:加強(qiáng)誦讀涵泳,在誦讀涵泳中感受其思想、藝術(shù)魅力,獲得情感的體驗(yàn)、心靈的共鳴和精神的陶冶。初步感知:此環(huán)節(jié)先由學(xué)生跟著范讀閱讀《蜀道難》,解決字音字意等基本問(wèn)題,根據(jù)學(xué)生的自我感覺完成最為感性的詩(shī)歌認(rèn)識(shí),直接而感性的閱讀,培養(yǎng)的是學(xué)生的自我語(yǔ)言感受。之后將利用幻燈片給學(xué)生展示蜀道各式各樣的圖片,讓學(xué)生直觀的感受蜀道之險(xiǎn),在此基礎(chǔ)上播放動(dòng)畫音頻,從而使學(xué)生深入理解詩(shī)歌情感,進(jìn)一步感受李白詩(shī)歌浪漫奇特的藝術(shù)風(fēng)格。(三)深入賞析(65分鐘) 探—探究鑒賞“新課標(biāo)”要求培養(yǎng)學(xué)生自主、合作、探究的精神?;谡w感知詩(shī)歌后,我將進(jìn)一步引導(dǎo)學(xué)生分析和鑒賞詩(shī)歌。首先,蘇格拉底說(shuō),教育不是灌輸,而是點(diǎn)燃火焰。

我將本節(jié)課分為三個(gè)部分:1.情境導(dǎo)入先運(yùn)用多媒體,展示電影《赤壁》的幾張圖片,通過(guò)“赤壁之戰(zhàn)”將三國(guó)時(shí)期這場(chǎng)經(jīng)典戰(zhàn)爭(zhēng)諸葛亮的智謀呈現(xiàn)給學(xué)生,吸引學(xué)生走進(jìn)歷史,激發(fā)想象力和趣味性,提高學(xué)生的學(xué)習(xí)主動(dòng)性。在成功吸引學(xué)生注意力過(guò)后,再向他們說(shuō),這只是歷史中的一部分,在“赤壁之戰(zhàn)”前后,諸葛亮一生的故事是怎樣的呢?下面我們來(lái)看看唐代大詩(shī)人杜甫的《蜀相》,他是怎樣用精辟的詩(shī)句概括的。2.講授新課在成功吸引學(xué)生注意力后,迅速將他們帶入課文講授階段。第一,進(jìn)行作者介紹,其目的是為了使學(xué)生在整體上把握詩(shī)人的經(jīng)歷、寫作技巧、藝術(shù)風(fēng)格及寫作背景。第二,多誦讀,多推敲,理解詩(shī)中的言外之意。第三,把握重點(diǎn)詞語(yǔ),分析景物意象,體味作者的思想感情和作品的深層意蘊(yùn)。感受詩(shī)人憂國(guó)憂民強(qiáng)烈的愛國(guó)主義感情。

三、說(shuō)教學(xué)目標(biāo):根據(jù)教材特點(diǎn)、學(xué)生學(xué)情,結(jié)合單元的教學(xué)要求和本課特點(diǎn),我確定本節(jié)課的教學(xué)目標(biāo)為:1、語(yǔ)言建構(gòu)與運(yùn)用:把握小說(shuō)主要內(nèi)容,梳理小說(shuō)情節(jié)。2、思維發(fā)展與提升:鑒賞文本,品味人物形象,探究造成人物悲劇的社會(huì)根源。3、審美鑒賞與創(chuàng)造:分析祥林嫂人物形象,學(xué)習(xí)本文塑造人物形象的方法。4、文化傳承與理解:認(rèn)識(shí)封建禮教的罪惡,培養(yǎng)學(xué)生反封建意識(shí)及斗爭(zhēng)意識(shí),體會(huì)魯迅小說(shuō)的社會(huì)批判性。四、說(shuō)教學(xué)重難點(diǎn):教學(xué)重點(diǎn):分析祥林嫂的人物形象。教學(xué)難點(diǎn):體會(huì)次要人物身上的內(nèi)涵,探究造成人物悲劇的社會(huì)根源。五、說(shuō)教法學(xué)法:教法:任務(wù)導(dǎo)向 啟發(fā)與點(diǎn)撥 講授學(xué)法:?jiǎn)栴}探究 小組合作 展示學(xué)習(xí)是自覺的能力,合作是團(tuán)隊(duì)的探究,通過(guò)指導(dǎo)自學(xué),小組學(xué)習(xí),提升合作學(xué)習(xí)的能力,讓學(xué)生掌握科學(xué)的學(xué)習(xí)方法,教法上,我充分遵從認(rèn)知規(guī)律和教學(xué)規(guī)律,尊重學(xué)生主體地位以學(xué)習(xí)任務(wù)為驅(qū)動(dòng),以情境創(chuàng)設(shè)為手段,啟

一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問(wèn)題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長(zhǎng).公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過(guò)線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過(guò)點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問(wèn)題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問(wèn)題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說(shuō)明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無(wú)關(guān),也就是說(shuō)公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過(guò)一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過(guò)點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

切線方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

解析:①過(guò)原點(diǎn)時(shí),直線方程為y=-34x.②直線不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來(lái)表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說(shuō)法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

環(huán)境問(wèn)題 是伴著人口問(wèn)題、資源問(wèn)題和發(fā)展問(wèn)題產(chǎn)生。本質(zhì)是發(fā)展問(wèn)題 ,可持續(xù)發(fā)展。6分析可持續(xù)發(fā)展的概念、內(nèi)涵和 原則?可持續(xù)發(fā)展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展 ,發(fā)展的基礎(chǔ);經(jīng)濟(jì)持續(xù)發(fā)展,發(fā)展條件;社會(huì)持續(xù)發(fā)展,發(fā)展目的??沙掷m(xù)發(fā)展的原則:公平性原則——代內(nèi)、代際、人與物、國(guó)家與地區(qū)之間;持續(xù)性原則——經(jīng)濟(jì)活動(dòng)保持在資源環(huán)境承載力之內(nèi);共同性原則— —地球是一個(gè)整體?!究偨Y(jié)新課】可持續(xù)發(fā) 展的含義:可持續(xù)發(fā)展是這樣的發(fā)展,它既滿足當(dāng)代人的需求,而又不損害后代人滿足其需求的能力??沙掷m(xù)發(fā)展的內(nèi)涵:生態(tài)持續(xù)發(fā)展,發(fā)展的基礎(chǔ);經(jīng)濟(jì)持續(xù)發(fā)展,發(fā)展條件;社會(huì)持續(xù)發(fā)展,發(fā)展目的。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。