【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).
解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.
1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤
4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.
一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡(jiǎn)單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.
本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)直線的兩點(diǎn)式方程。
本節(jié)課的關(guān)鍵是關(guān)于兩點(diǎn)式的推導(dǎo)以及斜率k不存在或斜率k=0時(shí)對(duì)兩點(diǎn)式的討論及變形。直線方程的兩點(diǎn)式可由點(diǎn)斜式導(dǎo)出,若已知兩點(diǎn)恰好在坐標(biāo)軸上(非原點(diǎn)),則可用兩點(diǎn)式的特例截距式寫出直線的方程。由于由截距式方程可直接確定直線與x軸和y軸的交點(diǎn)的坐標(biāo),因此用截距式畫直線比較方便。在解決與截距有關(guān)或直線與坐標(biāo)軸圍成的三角形面積、周長(zhǎng)等問題時(shí),經(jīng)常使用截距式。解決問題的關(guān)鍵是理解理解直線方程的兩點(diǎn)式和截距式的形式特點(diǎn)及適用范圍。教學(xué)中應(yīng)充分體現(xiàn)坐標(biāo)法建立方程的一般思路,為后續(xù)學(xué)習(xí)圓的方程及圓錐曲線的方程奠定基礎(chǔ)。發(fā)展學(xué)生數(shù)學(xué)抽象、邏輯推理、直觀想象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。
課程目標(biāo) | 學(xué)科素養(yǎng) |
A.掌握直線的兩點(diǎn)式方程和截距式方程. B.會(huì)選擇適當(dāng)?shù)姆匠绦问角笾本€方程. C.能用直線的兩點(diǎn)式方程與截距式方程解答有關(guān)問題.
| 1.數(shù)學(xué)抽象:直線的兩點(diǎn)式方程和截距式方程 2.邏輯推理:直線方程之間的關(guān)系 3.數(shù)學(xué)運(yùn)算:用直線的兩點(diǎn)式方程與截距式方程求直線方程 4.直觀想象:截距的幾何意義 |
1.教學(xué)重點(diǎn):掌握直線方程的兩點(diǎn)式及截距式
2.教學(xué)難點(diǎn):會(huì)選擇適當(dāng)?shù)姆匠绦问角笾本€方程
多媒體
教學(xué)過程 | 教學(xué)設(shè)計(jì)意圖 核心素養(yǎng)目標(biāo) |
一、情境導(dǎo)學(xué) 我們知道在直角坐標(biāo)系內(nèi)確定一條直線的幾何要素:點(diǎn)和傾斜角(斜率),即已知直線上的一點(diǎn)和直線的斜率可以確定一條直線,或已知兩點(diǎn)也可以確定一條直線。 這樣,在直角坐標(biāo)系中,給定一個(gè)點(diǎn)p0(x0,y0)和斜率k,可得出直線方程。若給定直線上兩點(diǎn)p1(x1,y1)p2(x2,y2),你能否得出直線的方程呢? 二、探究新知 1.直線的兩點(diǎn)式方程 (1)直線的兩點(diǎn)式方程的定義 ________________就是經(jīng)過兩點(diǎn)P1(x1,y1),P2(x2,y2)(其中x1≠x2,y1≠y2)的直線方程,我們把它叫做直線的兩點(diǎn)式方程,簡(jiǎn)稱兩點(diǎn)式. = 點(diǎn)睛:1.當(dāng)兩點(diǎn)(x1,y1),(x2,y2)的直線斜率不存在(x1=x2)或斜率為0(y1=y2)時(shí),不能用兩點(diǎn)式方程表示,即兩點(diǎn)式方程不能表示與坐標(biāo)軸垂直的直線. 2.對(duì)于兩點(diǎn)式中的兩個(gè)點(diǎn),只要是直線上的兩個(gè)點(diǎn)即可;另外,兩點(diǎn)式方程與這兩個(gè)點(diǎn)的順序無關(guān),如直線過點(diǎn)P1(1,1),P2(2,3),由兩點(diǎn) 式可得,也可以寫成 1. 把由直線上已知的兩點(diǎn)坐標(biāo)得到的直線方程化為整式形式(y-y1)(x2-x1)=(y2-y1)(x-x1),對(duì)兩點(diǎn)的坐標(biāo)還有限制條件嗎? 答案:這個(gè)方程對(duì)兩點(diǎn)的坐標(biāo)沒有限制,即它可以表示過任意兩點(diǎn)的直線方程. 2.已知直線l過點(diǎn)A(3,1),B(2,0),則直線l的方程為 . 解析:由兩點(diǎn)式,得,化簡(jiǎn)得x-y-2=0. 答案:x-y-2=0 二、直線的截距式方程 點(diǎn)睛:直線的截距式方程是直線的兩點(diǎn)式方程的特殊情況,由直線的截距式方程可以直接讀出直線在x軸和y軸上的截距,所以截距式在解決直線與坐標(biāo)軸圍成的三角形的面積和周長(zhǎng)問題時(shí)非常方便. 3.在x,y軸上的截距分別是-3,4的直線方程是( ) A.+=1 B.+=1 C.-=1 D.+=1 答案A 解析:由截距式方程知直線方程為+=1.選A. 4.直線=1(ab≠0)在y軸上的截距是( ) A.a2 B.b2 C.-b2 D.|b| 答案:C 解析:原直線方程化為截距式方程為=1,故在y軸上的截距是-b2. 三、典例解析 例1 已知三角形的三個(gè)頂點(diǎn)A(-4,0),B(0,-3),C(-2,1),求: (1)BC邊所在的直線方程; (2)BC邊上中線所在的直線方程. 思路分析:已知直線上兩個(gè)點(diǎn)的坐標(biāo),可以利用兩點(diǎn)式寫出直線的方程. 解:(1)直線BC過點(diǎn)B(0,-3),C(-2,1),由兩點(diǎn)式方程得,化簡(jiǎn)得2x+y+3=0. (2)由中點(diǎn)坐標(biāo)公式,得BC的中點(diǎn)D的坐標(biāo)為, 即D(-1,-1). 又直線AD過點(diǎn)A(-4,0),由兩點(diǎn)式方程得, 化簡(jiǎn)得x+3y+4=0. 延伸探究例1已知條件不變,求: (1)AC邊所在的直線方程; (2)AC邊上中線所在的直線方程. 解:(1)由兩點(diǎn)式方程,得, 化簡(jiǎn)得x-2y+4=0. (2)由中點(diǎn)坐標(biāo)公式得AC邊的中點(diǎn)E(-3,),中線BE所在直線的方程為, 化簡(jiǎn)得7x+6y+18=0. 兩點(diǎn)式方程的應(yīng)用 用兩點(diǎn)式方程寫出直線的方程時(shí),要特別注意橫坐標(biāo)相等或縱坐標(biāo)相等時(shí),不能用兩點(diǎn)式.已知直線上的兩點(diǎn)坐標(biāo),也可先求出斜率,再利用點(diǎn)斜式寫出直線方程. 例2過點(diǎn)P(1,3),且與x軸、y軸的正半軸圍成的三角形的面積等于6的直線方程是( ) A.3x+y-6=0 B.x+3y-10=0 C.3x-y=0 D.x-3y+8=0 思路分析:設(shè)出直線的截距式方程,然后利用點(diǎn)P在直線上以及三角形的面積列出參數(shù)所滿足的條件,解方程求出參數(shù). 解析:設(shè)所求的直線方程為=1(a>0,b>0), 由于過點(diǎn)P(1,3)且與兩坐標(biāo)軸的正半軸所圍成的三角形面積等于6, 因此有解得 故所求直線的方程為3x+y-6=0. 答案:A 總結(jié)歸納:在涉及直線與兩個(gè)坐標(biāo)軸的截距問題時(shí),常把直線方程設(shè)為截距式,由已知條件建立關(guān)于兩截距的方程,解得截距的值,從而確定方程. 訓(xùn)練跟蹤1 直線l過點(diǎn)(-3,4),且在兩坐標(biāo)軸上的截距之和為12,求直線l的方程. 解:由于直線在兩坐標(biāo)軸上的截距之和為12,因此直線l在兩坐標(biāo)軸上的截距都存在且不過原點(diǎn),故可設(shè)為截距式直線方程. 設(shè)直線l的方程為=1,則a+b=12.① 又直線l過點(diǎn)(-3,4), 所以=1.② 由①②解得 故所求的直線方程為=1或=1, 即x+3y-9=0或4x-y+16=0. 跟蹤訓(xùn)練2將變式訓(xùn)練1中的條件“在兩坐標(biāo)軸上的截距之和為12”改為“在兩坐標(biāo)軸上的截距的絕對(duì)值相等”,求直線l的方程. 解:設(shè)直線l在x軸、y軸上的截距分別為a,b. (1)當(dāng)a≠0,b≠0時(shí), 設(shè)l的方程為=1, 因?yàn)辄c(diǎn)(-3,4)在直線上,所以=1. 若a=b,則a=b=1,直線方程為x+y-1=0; 若a=-b,則a=-7,b=7,直線方程為x-y+7=0. (2)當(dāng)a=b=0時(shí),直線過原點(diǎn),且過(-3,4),所以直線方程為4x+3y=0. 綜上所述,所求直線方程為: x+y-1=0或x-y+7=0或4x+3y=0. 金題典例 如圖,某小區(qū)內(nèi)有一塊荒地ABCDE,已知BC=210 m,CD=240 m,DE=300 m,EA=180 m,AE∥CD,BC∥DE,∠C=90,今欲在該荒地上劃出一塊長(zhǎng)方形地面(不改變方位)進(jìn)行開發(fā).問如何設(shè)計(jì)才能使開發(fā)的面積最大?最大開發(fā)面積是多少? 思路分析將問題轉(zhuǎn)化為在線段AB上求一點(diǎn)P,使矩形面積最大,根據(jù)圖形特征,可建立適當(dāng)?shù)淖鴺?biāo)系,求出AB的方程.這里設(shè)點(diǎn)P的坐標(biāo)是關(guān)鍵. 解:以BC所在直線為x軸,AE所在直線為y軸建立平面直角坐標(biāo)系(如圖),由已知可得A(0,60),B(90,0), ∴AB所在直線的方程為=1,即y=60(1-). ∴y=60-x.從而可設(shè)P(x,60-x),其中0≤x≤90, ∴所開發(fā)部分的面積為S=(300-x)(240-y). 故S=(300-x)(240-60+x)=-x2+20x+54 000(0≤x≤90), ∴當(dāng)x=-=15,且y=60-15=50時(shí), S取最大值為-152+2015+54 000=54 150(m2). 因此點(diǎn)P距AE 15 m,距BC 50 m時(shí)所開發(fā)的面積最大, 最大面積為54 150 m2 歸納總結(jié) 二次函數(shù)最值問題,一方面要看頂點(diǎn)位置,另一方面還要看定義域的范圍.結(jié)合圖形求解,有時(shí)并非在頂點(diǎn)處取得最值. |
通過對(duì)直線幾何要素及點(diǎn)斜式方程的回顧,提出問題,讓學(xué)生初步體會(huì)坐標(biāo)法的思想方法,并提出問題,明確研究問題運(yùn)用方程思想,求解直線兩點(diǎn)=點(diǎn)式方程。
由坐標(biāo)系中的直線,讓學(xué)生理解已知直線兩個(gè)要素,建立直線方程的過程。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。
通過典型例題的分析和解決,讓學(xué)生加深對(duì)利用兩點(diǎn)式和截距式求解直線方程的方法,提升運(yùn)用能力。發(fā)展學(xué)生數(shù)學(xué)抽象、直觀想象、邏輯推理的核心素養(yǎng)。
通過典例解析,進(jìn)一步讓理解運(yùn)用兩點(diǎn)式和截距式方程的方法,并能合理選擇直線的方程形式,進(jìn)一步體會(huì)坐標(biāo)法解決問題的基本思想。
|
三、達(dá)標(biāo)檢測(cè) 1.過P1(2,0),P2(0,3)兩點(diǎn)的直線方程是( ) A.=0 B.=0 C.=1 D.=1 解析:由截距式,得所求直線的方程為=1. 答案:C 2.已知△ABC三頂點(diǎn)A(1,2),B(3,6),C(5,2),M為AB的中點(diǎn),N為AC的中點(diǎn),則中位線MN所在的直線方程為( ) A.2x+y-8=0 B.2x-y+8=0 C.2x+y-12=0 D.2x-y-12=0 解析:點(diǎn)M的坐標(biāo)為(2,4),點(diǎn)N的坐標(biāo)為(3,2),由兩點(diǎn)式方程 得,即2x+y-8=0. 答案:A 3.過點(diǎn)P(4,-3)且在坐標(biāo)軸上截距相等的直線有( ) A.1條 B.2條 C.3條 D.4條 解析:①過原點(diǎn)時(shí),直線方程為y=-x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為+=1, ∴+=1,∴a=1.∴直線方程為x+y-1=0. 所以這樣的直線有2條,選B. 答案:B 4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為,即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2. 答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為,所以直線與坐標(biāo)軸圍成的三角形面積為. 答案: 6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0). (1)求三角形三邊所在直線的方程; (2)求AC邊上的垂直平分線的方程. 解析(1)直線AB的方程為=,整理得x+y-4=0; 直線BC的方程為=,整理得x-y+8=0; 由截距式可知,直線AC的方程為+=1,整理得x-2y+8=0. (2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為, 則AC邊上的垂直平分線的斜率為-2, 所以AC邊的垂直平分線的方程為y-2=-2(x+4), 整理得2x+y+6=0. |
通過練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。
|
轉(zhuǎn)載請(qǐng)注明出處!本文地址:
http://ibju.cn/worddetails_14970417.html1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。
一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運(yùn)用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。
二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。
二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問題,并針對(duì)科技工作中存在的問題,采取實(shí)際措施,推動(dòng)問題的實(shí)際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問題,并成功解決其中7個(gè)問題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項(xiàng)目開工前還有許多實(shí)際問題亟需解決。結(jié)合“到一線去”專項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。
三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
一是XX單位下轄的部分黨支部和黨員干部個(gè)人的自我檢視不夠,特別是抓整改的措施落實(shí)得還不夠全面,還有一些問題沒有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實(shí)際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問題導(dǎo)向,采取積極有效措施徹底解決以上存在的問題,確保主題教育實(shí)現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動(dòng)性和自覺性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書記的要求,持之以恒,發(fā)揚(yáng)“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實(shí)釘牢。二是主動(dòng)運(yùn)用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅(jiān)定地與上級(jí)黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識(shí)擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點(diǎn),圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實(shí)實(shí)推進(jìn)中心工作。
二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國供銷集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶過程中存在的困難和問題,力爭(zhēng)早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過“比實(shí)績(jī)、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。
(五)實(shí)施融合促進(jìn)工程,切實(shí)發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅(jiān)持推動(dòng)黨建與業(yè)務(wù)工作深度融合,堅(jiān)持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實(shí)、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動(dòng)基層治理體系和治理能力現(xiàn)代化的實(shí)施意見》,組織開展“我為群眾辦實(shí)事”“雙報(bào)到”實(shí)踐活動(dòng)300余次。邀請(qǐng)市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報(bào)告”警營開放日活動(dòng),在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來的忠誠擔(dān)當(dāng)、清正廉潔、無私奉獻(xiàn)的,選樹28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個(gè)先進(jìn)基層黨組織,充分發(fā)揮正向激勵(lì)作用,營造學(xué)習(xí)典型、爭(zhēng)做典型、弘揚(yáng)典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。
一是及時(shí)傳達(dá)學(xué)習(xí)xxx總書記重要指示精神。堅(jiān)持把學(xué)習(xí)貫徹xxx總書記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會(huì)及時(shí)傳達(dá)學(xué)習(xí),并就貫徹落實(shí)指示精神提出具體措施,扎實(shí)抓好我局領(lǐng)導(dǎo)班子和干部隊(duì)伍建設(shè),以實(shí)際工作業(yè)績(jī)彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅(jiān)持把考察了解班子和干部的功夫下在平時(shí),定期開展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點(diǎn)了解班子運(yùn)行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽取干部群眾對(duì)班子和干部的評(píng)價(jià),掌握班子成員個(gè)人思想動(dòng)態(tài)和意愿訴求。同時(shí),將研判中發(fā)現(xiàn)的政治堅(jiān)定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實(shí)做好干部?jī)?chǔ)備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實(shí)干部監(jiān)督工作聯(lián)席會(huì)議制度,定期與紀(jì)檢、公檢法、信訪、審計(jì)等部門溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。
2024年是XX油田剛性推進(jìn)“三年一盤棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實(shí)現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅(jiān)持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點(diǎn),邁向新征程,公司既面對(duì)難得發(fā)展機(jī)遇,也面臨不少風(fēng)險(xiǎn)挑戰(zhàn)。開展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng),就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時(shí)代中國特色社會(huì)主義思想和黨的XX大精神,全面貫徹落實(shí)中油集團(tuán)公司2024年工作會(huì)議和油田公司、公司“兩會(huì)”各項(xiàng)工作部署,始終不忘“我為祖國獻(xiàn)石油”的初心,深刻認(rèn)識(shí)油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅(jiān)定“服務(wù)油田開發(fā)”主導(dǎo)思想不動(dòng)搖,圍繞“12345”發(fā)展戰(zhàn)略,推動(dòng)服務(wù)水平再提檔、再升級(jí),加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。
(二)堅(jiān)持問題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗(yàn),同時(shí)主動(dòng)查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點(diǎn)問題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡(jiǎn)審批程序,縮短辦事路徑,壓縮辦理時(shí)限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時(shí)代人民群眾對(duì)政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時(shí)總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗(yàn)做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動(dòng)全市創(chuàng)建工作質(zhì)效整體提升。要面向社會(huì)和公眾莊嚴(yán)承諾并積極踐諾,主動(dòng)接受監(jiān)督,同時(shí)要依托電臺(tái)、電視臺(tái)、報(bào)紙及微信、微博等各類媒體大力宣傳xx隊(duì)伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會(huì)知情面和群眾知曉率。