提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word模板 > 教育教學(xué) > 課件教案> 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時(shí)間:2023-10-27
  • 字?jǐn)?shù):約5541字
  • 頁數(shù):約9頁
  • 格式:.docx
  • 推薦版本:Office2016及以上版本
  • 售價(jià):5 金幣 / 會(huì)員免費(fèi)

您可能喜歡的文檔

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|

  • 用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、探究新知一、空間中點(diǎn)、直線和平面的向量表示1.點(diǎn)的位置向量在空間中,我們?nèi)∫欢c(diǎn)O作為基點(diǎn),那么空間中任意一點(diǎn)P就可以用向量(OP) ?來表示.我們把向量(OP) ?稱為點(diǎn)P的位置向量.如圖.2.空間直線的向量表示式如圖①,a是直線l的方向向量,在直線l上取(AB) ?=a,設(shè)P是直線l上的任意一點(diǎn),則點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使得(AP) ?=ta,即(AP) ?=t(AB) ?.如圖②,取定空間中的任意一點(diǎn)O,可以得到點(diǎn)P在直線l上的充要條件是存在實(shí)數(shù)t,使(OP) ?=(OA) ?+ta, ①或(OP) ?=(OA) ?+t(AB) ?. ②①式和②式都稱為空間直線的向量表示式.由此可知,空間任意直線由直線上一點(diǎn)及直線的方向向量唯一確定.1.下列說法中正確的是( )A.直線的方向向量是唯一的B.與一個(gè)平面的法向量共線的非零向量都是該平面的法向量C.直線的方向向量有兩個(gè)D.平面的法向量是唯一的答案:B 解析:由平面法向量的定義可知,B項(xiàng)正確.

  • 用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    用空間向量研究直線、平面的位置關(guān)系(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    跟蹤訓(xùn)練1在正方體ABCD-A1B1C1D1中,E為AC的中點(diǎn).求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點(diǎn),DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標(biāo)系.設(shè)正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點(diǎn).求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標(biāo)系,通過坐標(biāo)運(yùn)算證明(D_1 M) ?與平面EFB1內(nèi)的兩個(gè)不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因?yàn)镋,F,M分別為棱AB,BC,B1B的中點(diǎn),所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因?yàn)?B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 查看更多相關(guān)Word文檔

直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)

本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)直線與圓的位置關(guān)系。

學(xué)生在初中的幾何學(xué)習(xí)中已經(jīng)接觸過直線與圓的位置關(guān)系,本章已經(jīng)學(xué)習(xí)了直線與圓的方程、點(diǎn)到直線的距離公式、點(diǎn)與圓的位置關(guān)系等內(nèi)容,因此本節(jié)課是對(duì)已學(xué)內(nèi)容的深化何延伸;另一方面,本節(jié)課對(duì)于后面學(xué)習(xí)直線與圓錐曲線的位置關(guān)系等內(nèi)容又是一個(gè)鋪墊,具有承上啟下的地位。坐標(biāo)法不僅是研究幾何問題的重要方法,而且是一種廣泛應(yīng)用于其他領(lǐng)域的重要數(shù)學(xué)方法。通過坐標(biāo)系,把點(diǎn)和坐標(biāo)、曲線和方程聯(lián)系起來,實(shí)現(xiàn)了形和數(shù)的統(tǒng)一。


課程目標(biāo)

學(xué)科素養(yǎng)

A.能根據(jù)給定直線、圓的方程,判斷直線與圓的位置關(guān)系.

B.能用直線和圓的方程解決一些簡單的數(shù)學(xué)問題與實(shí)際問題.

1.數(shù)學(xué)抽象:直線與圓的位置關(guān)系

2.邏輯推理:判斷直線與圓的位置關(guān)系

3.數(shù)學(xué)運(yùn)算:判斷直線與圓的位置關(guān)系

4.數(shù)學(xué)建模:直線和圓的方程解決實(shí)際問題

重點(diǎn):判斷直線與圓的位置關(guān)系

難點(diǎn):直線和圓的方程解決一些簡單的數(shù)學(xué)問題與實(shí)際問題

多媒體

教學(xué)過程

教學(xué)設(shè)計(jì)意圖

核心素養(yǎng)目標(biāo)

一、情境導(dǎo)學(xué)

“海上生明月,天涯共此時(shí)。”,表達(dá)了詩人望月懷人的深厚情誼。在海天交于一線的天際,一輪明月慢慢升起,先是探出半個(gè)圓圓的小腦袋,然后冉冉上升,和天際線相連,再躍出海面,越來越高,展現(xiàn)著迷人的風(fēng)采.

這個(gè)過程中,月亮看作一個(gè)圓,海天交線看作一條直線,月出的過程中也體現(xiàn)了直線與圓的三種位置關(guān)系:相交、相切和相離.

在平面幾何中,我們研究過直線與圓這兩類圖形的位置關(guān)系,前面我們學(xué)習(xí)了直線的方程,圓的方程,已經(jīng)用方程研究兩條直線的位置關(guān)系,下面我們未必用方程研究兩條直線位置關(guān)系的方法,利用直線和圓的方程通過定量計(jì)算研究直線與圓的位置關(guān)系。

二、探究新知

直線與圓的位置關(guān)系的判斷方法

直線Ax+By+C=0(A,B不同時(shí)為0)與圓(x-a)2+(y-b)2=r2(r>0)的位置關(guān)系及判斷

點(diǎn)睛:幾何法更為簡潔和常用.

1.直線3x+4y=5與圓x2+y2=16的位置關(guān)系是( )

A.相交 B.相切

C.相離 D.相切或相交

解析:圓心到直線的距離為d==1<4,所以直線與圓相交.

答案:A

三、典例解析

例1 已知直線方程mx-y-m-1=0,圓的方程x2+y2-4x-2y+1=0.

當(dāng)m為何值時(shí),直線與圓

(1)有兩個(gè)公共點(diǎn);

(2)只有一個(gè)公共點(diǎn);

(3)沒有公共點(diǎn)?

思路分析:可聯(lián)立方程組,由方程組解的個(gè)數(shù)判斷,也可求出圓心到直線的距離,通過與半徑比較大小判斷.

解:(方法1)將直線mx-y-m-1=0代入圓的方程,化簡、整理,

得(1+m2)x2-2(m2+2m+2)x+m2+4m+4=0.

∵Δ=4m(3m+4),∴當(dāng)Δ>0,即m>0或m<-時(shí),直線與圓相交,

即直線與圓有兩個(gè)公共點(diǎn);

當(dāng)Δ=0,即m=0或m=-時(shí),直線與圓相切,即直線與圓只有一個(gè)公共點(diǎn);

當(dāng)Δ<0,即-

(方法2)已知圓的方程可化為(x-2)2+(y-1)2=4,即圓心為(2,1),半徑r=2.圓心(2,1)到直線mx-y-m-1=0的距離d=.

當(dāng)d<2,即m>0或m<-時(shí),直線與圓相交,即直線與圓有兩個(gè)公共點(diǎn);

當(dāng)d=2,即m=0或m=-時(shí),直線與圓相切,即直線與圓只有一個(gè)公共點(diǎn);

當(dāng)d>2,即-

直線與圓的位置關(guān)系的判斷方法

直線與圓的位置關(guān)系反映在三個(gè)方面:

一是點(diǎn)到直線的距離與半徑大小的關(guān)系;

二是直線與圓的公共點(diǎn)的個(gè)數(shù);

三是兩方程組成的方程組解的個(gè)數(shù).

因此,若給出圖形,可根據(jù)公共點(diǎn)的個(gè)數(shù)判斷;若給出直線與圓的方程,可選擇用幾何法或代數(shù)法,幾何法計(jì)算量小,代數(shù)法可一同求出交點(diǎn).解題時(shí)可根據(jù)條件作出恰當(dāng)?shù)倪x擇.

例2 過點(diǎn)A(4,-3)作圓C:(x-3)2+(y-1)2=1的切線,求此切線的方程.

思路分析:利用圓心到切線的距離等于圓的半徑求出切線斜率,

進(jìn)而求出切線方程.

解:因?yàn)?4-3)2+(-3-1)2=17>1,所以點(diǎn)A在圓外.

(1)若所求切線的斜率存在,設(shè)切線斜率為k,

則切線方程為y+3=k(x-4).

因?yàn)閳A心C(3,1)到切線的距離等于半徑,半徑為1,

所以=1,即|k+4|=,

所以k2+8k+16=k2+1.解得k=-.所以切線方程為y+3=-(x-4),

即15x+8y-36=0.

(2)若直線斜率不存在,

圓心C(3,1)到直線x=4的距離也為1,

這時(shí)直線與圓也相切,所以另一條切線方程是x=4.

綜上,所求切線方程為15x+8y-36=0或x=4.

變式探究 過點(diǎn)Q(3,0)作圓x2+y2=4的切線,求此切線方程.

解:容易判斷點(diǎn)Q(3,0)在圓外.設(shè)切線的方程為y=k(x-3),

即kx-y-3k=0.又圓的圓心為(0,0),半徑為2,

所以=2,解得k=,

所以所求切線方程為y=(x-3).

切線方程的求法

1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.

2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解

設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.

例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.

思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.

解法一由得交點(diǎn)A(1,3),B(2,0),

故弦AB的長為|AB|=.

解法二由

消去y,得x2-3x+2=0.

設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),

則由根與系數(shù)的關(guān)系,得x1+x2=3,x1x2=2.∴|AB|=,

即弦AB的長為.

解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,

其圓心坐標(biāo)(0,1),半徑r=,

點(diǎn)(0,1)到直線l的距離為d=,

所以半弦長為,

所以弦長|AB|=

求直線與圓相交時(shí)弦長的兩種方法

(1)幾何法:如圖①,直線l與圓C交于A,B兩點(diǎn),設(shè)弦心距為d,圓的半徑為r,弦長為|AB|,則有()2+d2=r2,即|AB|=2

(2)代數(shù)法:如圖②所示,將直線方程與圓的方程聯(lián)立,設(shè)直線與圓的兩交點(diǎn)分別是A(x1,y1),B(x2,y2),則|AB|=|x1-x2|=|y1-y2|(直線l的斜率k存在).

跟蹤訓(xùn)練1 已知直線l經(jīng)過直線2x-y-3=0和4x-3y-5=0的交點(diǎn),且與直線x+y-2=0垂直.

(1)求直線l的方程;

(2)若圓C的圓心為點(diǎn)(3,0),直線l被該圓所截得的弦長為2 ,求圓C的標(biāo)準(zhǔn)方程.

解:(1)由已知得:解得

∴兩直線交點(diǎn)為(2,1).

設(shè)直線l的斜率為k1,∵l與x+y-2=0垂直,∴k1=1,

∵l過點(diǎn)(2,1),∴l(xiāng)的方程為y-1=x-2,即x-y-1=0;

(2)設(shè)圓的半徑為r,依題意,

圓心(3,0)到直線x-y-1=0的距離為,

則由垂徑定理得r2=()2+()2=4,∴r=2,

∴圓的標(biāo)準(zhǔn)方程為(x-3)2+y2=4.

例3.如圖,臺(tái)風(fēng)中心從地以每小時(shí)千米的速度向東北方向(北偏東)移動(dòng),離臺(tái)風(fēng)中心不超過千米的地區(qū)為危險(xiǎn)區(qū)域.城市在地的正東千米處.請(qǐng)建立恰當(dāng)?shù)钠矫嬷苯亲鴺?biāo)系,解決以下問題:

(1)求臺(tái)風(fēng)移動(dòng)路徑所在的直線方程;

(2)求城市處于危險(xiǎn)區(qū)域的時(shí)間是多少小時(shí)?

【解析】(1)以為原點(diǎn),正東方向?yàn)?img src="xheditor_skin/blank.gif" class="wordImage" width="7" height="16" alt="" />軸建立如圖所示的平面直角坐標(biāo)系

則臺(tái)風(fēng)中心的坐標(biāo)是,臺(tái)風(fēng)移動(dòng)路徑所在直線斜率為:

臺(tái)風(fēng)移動(dòng)路徑所在的直線方程為:

(2)以為圓心,千米為半徑作圓,圓和直線相交兩點(diǎn),則臺(tái)風(fēng)中心移到時(shí),城市開始受臺(tái)風(fēng)影響(危險(xiǎn)區(qū)),直到時(shí),解除影響

點(diǎn)到直線的距離:

,又(小時(shí))

城市處于危險(xiǎn)區(qū)內(nèi)的時(shí)間是小時(shí)

通過具體的情景,幫助學(xué)生回顧初中幾何中學(xué)習(xí)過的直線與圓的位置關(guān)系,同時(shí)提出運(yùn)用方程思想解法問題的方法。

通過典例解析,幫助學(xué)生進(jìn)一步熟悉兩種基本方法,判斷直線與圓的位置關(guān)系。發(fā)展學(xué)生數(shù)學(xué)運(yùn)算,數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。

在典例分析和練習(xí)中掌握求圓的切線方程的方法,即:代數(shù)法與幾何法。發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。

通過與直線與圓位置關(guān)系的應(yīng)用問題,提升學(xué)生數(shù)學(xué)建模,數(shù)形結(jié)合,及方程思想,發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。

三、達(dá)標(biāo)檢測(cè)

1.直線3x+4y+12=0與圓(x-1)2+(y+1)2=9的位置關(guān)系是( )

A.過圓心 B.相切

C.相離 D.相交但不過圓心

解析:圓心(1,-1)到直線3x+4y+12=0的距離d=

答案:D

2.若直線x+y+m=0與圓x2+y2=m相切,則m的值是( )

A.0或2 B.2 C. D.或2

解析:∵直線x+y+m=0與圓x2+y2=m相切,∴圓心O(0,0)到直線的距離,解得m=2(舍去0).故選B.

答案:B

3.經(jīng)過點(diǎn)M(2,1)作圓x2+y2=5的切線,則切線的方程為.

解析:易知點(diǎn)M在圓上,所以M為切點(diǎn),切點(diǎn)和圓心連線斜率k=,

則切線斜率為-2,切線方程為y-1=-2(x-2),

即2x+y-5=0.

答案:2x+y-5=0

4.直線y=x+1與圓x2+y2+2y-3=0交于A,B兩點(diǎn),則|AB|= .

解析:圓的方程可化為x2+(y+1)2=4,故圓心C(0,-1),半徑r=2,

圓心到直線y=x+1的距離d=,

所以弦長|AB|=2=2=2.

答案:2

5.如圖所示,一座圓拱(圓的一部分)橋,當(dāng)水面在圖位置m時(shí),拱頂離水面2 m,水面寬 12 m,當(dāng)水面下降1 m后,水面寬多少米?

【解析】以圓拱拱頂為坐標(biāo)原點(diǎn),以過拱頂?shù)呢Q直直線為y軸,建立直角坐標(biāo)系,

設(shè)圓心為C,水面所在弦的端點(diǎn)為A、B,則由已知得A(6,-2).設(shè)圓的半徑為r,則C(0,-r),即圓的方程為x2+(y+r)2=r2.①

將點(diǎn)A的坐標(biāo)為(6,-2)代入方程①,解得r=10.

∴圓的方程為x2+(y+10)2=100.②

當(dāng)水面下降1米后,可設(shè)點(diǎn)A′的坐標(biāo)為(x0,-3)(x0>3),

將A′的坐標(biāo)(x0,-3)代入方程②,求得.

∴水面下降1米后,水面寬為

通過練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過學(xué)生解決問題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。


最新課件教案文檔
  • 精選高中生期末評(píng)語

    精選高中生期末評(píng)語

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛說話 ,但勤奮好學(xué),誠實(shí)可愛;你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運(yùn)用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報(bào)告

    XX區(qū)民政局黨支部開展主題教育工作情況總結(jié)報(bào)告

    二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問題,并針對(duì)科技工作中存在的問題,采取實(shí)際措施,推動(dòng)問題的實(shí)際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問題,并成功解決其中7個(gè)問題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項(xiàng)目開工前還有許多實(shí)際問題亟需解決。結(jié)合“到一線去”專項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 5月份主題教育工作情況總結(jié)匯報(bào)

    5月份主題教育工作情況總結(jié)匯報(bào)

    一是XX單位下轄的部分黨支部和黨員干部個(gè)人的自我檢視不夠,特別是抓整改的措施落實(shí)得還不夠全面,還有一些問題沒有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實(shí)際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問題導(dǎo)向,采取積極有效措施徹底解決以上存在的問題,確保主題教育實(shí)現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動(dòng)性和自覺性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書記的要求,持之以恒,發(fā)揚(yáng)“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實(shí)釘牢。二是主動(dòng)運(yùn)用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅(jiān)定地與上級(jí)黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識(shí)擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點(diǎn),圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實(shí)實(shí)推進(jìn)中心工作。

  • ××縣招商局2024年上半年工作總結(jié)

    ××縣招商局2024年上半年工作總結(jié)

    二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國供銷集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶過程中存在的困難和問題,力爭早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過“比實(shí)績、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。

  • ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    (五)實(shí)施融合促進(jìn)工程,切實(shí)發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅(jiān)持推動(dòng)黨建與業(yè)務(wù)工作深度融合,堅(jiān)持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實(shí)、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動(dòng)基層治理體系和治理能力現(xiàn)代化的實(shí)施意見》,組織開展“我為群眾辦實(shí)事”“雙報(bào)到”實(shí)踐活動(dòng)300余次。邀請(qǐng)市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報(bào)告”警營開放日活動(dòng),在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來的忠誠擔(dān)當(dāng)、清正廉潔、無私奉獻(xiàn)的,選樹28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個(gè)先進(jìn)基層黨組織,充分發(fā)揮正向激勵(lì)作用,營造學(xué)習(xí)典型、爭做典型、弘揚(yáng)典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。

  • 《2019—2024年全國黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    《2019—2024年全國黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    一是及時(shí)傳達(dá)學(xué)習(xí)xxx總書記重要指示精神。堅(jiān)持把學(xué)習(xí)貫徹xxx總書記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會(huì)及時(shí)傳達(dá)學(xué)習(xí),并就貫徹落實(shí)指示精神提出具體措施,扎實(shí)抓好我局領(lǐng)導(dǎo)班子和干部隊(duì)伍建設(shè),以實(shí)際工作業(yè)績彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅(jiān)持把考察了解班子和干部的功夫下在平時(shí),定期開展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點(diǎn)了解班子運(yùn)行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽取干部群眾對(duì)班子和干部的評(píng)價(jià),掌握班子成員個(gè)人思想動(dòng)態(tài)和意愿訴求。同時(shí),將研判中發(fā)現(xiàn)的政治堅(jiān)定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實(shí)做好干部儲(chǔ)備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實(shí)干部監(jiān)督工作聯(lián)席會(huì)議制度,定期與紀(jì)檢、公檢法、信訪、審計(jì)等部門溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。

  • “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    2024年是XX油田剛性推進(jìn)“三年一盤棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實(shí)現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅(jiān)持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點(diǎn),邁向新征程,公司既面對(duì)難得發(fā)展機(jī)遇,也面臨不少風(fēng)險(xiǎn)挑戰(zhàn)。開展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng),就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時(shí)代中國特色社會(huì)主義思想和黨的XX大精神,全面貫徹落實(shí)中油集團(tuán)公司2024年工作會(huì)議和油田公司、公司“兩會(huì)”各項(xiàng)工作部署,始終不忘“我為祖國獻(xiàn)石油”的初心,深刻認(rèn)識(shí)油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅(jiān)定“服務(wù)油田開發(fā)”主導(dǎo)思想不動(dòng)搖,圍繞“12345”發(fā)展戰(zhàn)略,推動(dòng)服務(wù)水平再提檔、再升級(jí),加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。

  • “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    “四零”承諾服務(wù)創(chuàng)建工作總結(jié)

    (二)堅(jiān)持問題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗(yàn),同時(shí)主動(dòng)查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點(diǎn)問題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時(shí)限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時(shí)代人民群眾對(duì)政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時(shí)總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗(yàn)做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動(dòng)全市創(chuàng)建工作質(zhì)效整體提升。要面向社會(huì)和公眾莊嚴(yán)承諾并積極踐諾,主動(dòng)接受監(jiān)督,同時(shí)要依托電臺(tái)、電視臺(tái)、報(bào)紙及微信、微博等各類媒體大力宣傳xx隊(duì)伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會(huì)知情面和群眾知曉率。