
解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因為個位數(shù)上的數(shù)字不可能是負數(shù),所以x=-3應(yīng)舍去.當x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分數(shù)、負數(shù)根不符合實際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認識方程模型的重要性.通過列方程解應(yīng)用題,進一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學習的意識.體會數(shù)學與實際生活的聯(lián)系,進一步感知方程的應(yīng)用價值.

解析:(1)根據(jù)題設(shè)條件,求出等量關(guān)系,列一元一次方程即可求解;(2)根據(jù)題設(shè)中的不等關(guān)系列出相應(yīng)的不等式,通過求解不等式確定最值,求最值時要注意自變量的取值范圍.解:設(shè)購進A種樹苗x棵,則購進B種樹苗(17-x)棵,(1)根據(jù)題意得80x+60(17-x)=1220,解得x=10,所以17-x=17-10=7,答:購進A種樹苗10棵,B種樹苗7棵;(2)由題意得17-x172,所需費用為80x+60(17-x)=20x+1020(元),費用最省需x取最小整數(shù)9,此時17-x=17-9=8,此時所需費用為20×9+1020=1200(元).答:購買9棵A種樹苗,8棵B種樹苗的費用最省,此方案所需費用1200元.三、板書設(shè)計一元一次不等式與一次函數(shù)關(guān)系的實際應(yīng)用分類討論思想、數(shù)形結(jié)合思想本課時結(jié)合生活中的實例組織學生進行探索,在探索的過程中滲透分類討論的思想方法,培養(yǎng)學生分析、解決問題的能力,從新課到練習都充分調(diào)動了學生的思考能力,為后面的學習打下基礎(chǔ).

解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應(yīng)的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關(guān)鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設(shè)計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應(yīng)用

1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關(guān)系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點,AB=16cm,BC= 6cm,動點P、 Q分別從點A、C出發(fā),點P以3cm/s的速度向點B移動,一直到達B為止;點Q以2cm/s的速度向點D移動。經(jīng)過多長時間P、Q兩點之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點D從點A開始沿邊AB以2cm/s的速度向點B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點的正北方向10海里外的A點有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點B為追上時的位置)?

【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設(shè)教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究

(3)設(shè)點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關(guān)系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).

變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關(guān)性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關(guān)鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合

練習:現(xiàn)在你能解答課本85頁的習題3.1第6題嗎?有一個班的同學去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學?小結(jié)提問:1、今天你又學會了解方程的哪些方法?有哪些步聚?每一步的依據(jù)是什么?2、現(xiàn)在你能回答前面提到的古老的代數(shù)書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關(guān)系又有何共同特點?學生思考后回答、整理:① 解方程的步驟及依據(jù)分別是:移項(等式的性質(zhì)1)合并(分配律)系數(shù)化為1(等式的性質(zhì)2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)

(3)移項得-4x=4+8,合并同類項得-4x=12,系數(shù)化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數(shù)化成1得x=4.方法總結(jié):將所有含未知數(shù)的項移到方程的左邊,常數(shù)項移到方程的右邊,然后合并同類項,最后將未知數(shù)的系數(shù)化為1.特別注意移項要變號.探究點三:列一元一次方程解應(yīng)用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據(jù)實際書的數(shù)量可得相應(yīng)的等量關(guān)系:3×學生數(shù)量+20=4×學生數(shù)量-25,把相關(guān)數(shù)值代入即可求解.解:設(shè)這個班有x個學生,根據(jù)題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數(shù)化成1得x=45.答:這個班有45人.方法總結(jié):列方程解應(yīng)用題時,應(yīng)抓住題目中的“相等”、“誰比誰多多少”等表示數(shù)量關(guān)系的詞語,以便從中找出合適的等量關(guān)系列方程.

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學校藝術(shù)團生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學生免費供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?

1、教材地位:《加法運算定律的應(yīng)用》這節(jié)內(nèi)容是在前面學習了加法交換律及加法結(jié)合律的基礎(chǔ)上進行教學的。它是加法兩個運算定律在實際生活的應(yīng)用,同時也為后面進行簡便計算打下一定的基礎(chǔ)。教材中改變了改變了以往簡便計算以介紹算法技巧為主的傾向,著力引導學生將簡便計算應(yīng)用于解決現(xiàn)實生活中的實際問題,讓學生借助于解決實際問題,進一步體會和認識運算定律。同時注意解決問題策略的多樣化。這對發(fā)展學生思維的靈活性,提高學生分析問題、解決問題的能力,都有一定的促進作用。它是在例2已經(jīng)計算了李叔叔前3天所行路程和的基礎(chǔ)上,給出李叔叔后四天的行程計劃,讓學生求4天計劃行程的和。教材中設(shè)計的四個加數(shù),其中兩個可以湊成整百數(shù),另兩個可以湊成整十數(shù),旨在讓學生將前面所學的兩條加法運算定律,綜合運用到解決實際問題的計算中。

3、整理數(shù)據(jù),確定思路。在此認知基礎(chǔ)上,緊接著引申出進一步研究的問題“各條跑道的起跑線應(yīng)該相差多少米?”這個問題很難通過觀察得到,需要學生收集相關(guān)數(shù)據(jù),具體分析起跑線的位置與什么有關(guān)。使學生在匯報的過程中自然的發(fā)現(xiàn):要確定跑道的起跑線,只要算出每相鄰兩條跑道的長度差就可以了。有的學生說,由于跑道的直道長度是相同的,所以算出彎道的長度差就可以了。在這里,教師或?qū)W生還可就圖片說明半圓形跑道的直徑是如何規(guī)定的,也就是里圓的直徑加上兩個跑道的寬度,以及跑道線的寬在這里忽略不計等問題向其它學生作一具體說明。在些環(huán)節(jié),讓學生進行觀察,讓他們自己發(fā)現(xiàn)規(guī)律,培養(yǎng)他們抽象概括能力和語言表達能力,在這個環(huán)節(jié)中教師要靈活的駕駑課堂,及時的抓住課堂中新生成的問題,使問題得以提升,把課堂推向了高潮.

◆學習內(nèi)容長方體和正方體的體積教科書第40——43頁例1、例2,第43頁“做一做”,以及練習七第3——8題?!魧W習目標1. 掌握長方體和正方體的體積計算公式,學會計算長方體和正方體的體積。2. 培養(yǎng)實際操作能力,推理能力及運用知識解決實際問題的能力?!魧W習重點能正確計算長方體和正方體的體積。長方體和正方體體積的計算是形成體積的概念、掌握體積的計量單位和計算各種幾何形體體積的基礎(chǔ)?!魧W習難點理解長方體和正方體的體積計算公式的推導過程。體積公式的推導是建立在充分的感性經(jīng)驗的基礎(chǔ)上,溝通每行個數(shù)、行數(shù)、層數(shù)與長、寬、高之間的聯(lián)系,進而順理成章地推導出公式?!魧W習過程1. 實驗探索長方體的體積公式計量一個長方體的體積是多少,就是看這個長方體里含有多少個體積單位。但不是所有的物體都能切割成若干個小正方體。動手做試驗:用體積為1cm3小正方體擺成不同的長方體。將相關(guān)數(shù)據(jù)填入下表。

二、 說學情:二年級的學生由于他們的年齡特點,具有較高的學習熱情,喜歡做游戲,喜歡與他人合作,同時也具備了一些簡單的邏輯推理能力?;谝陨锨闆r,本節(jié)課將以游戲的形式為主,讓學生通過生動有趣、形式多樣的猜測、推理游戲,使學生在具體的情境中感受簡單的推理過程,獲得一些簡單的推理經(jīng)驗,提高學生的分析能力與合作能力。三、說教學目標:知識與技能目標:通過觀察與形式多樣的猜測活動,使學生經(jīng)歷簡單的推理過程,初步獲得一些推理經(jīng)驗。過程與方法目標:通過借助連線、列表等方式整理信息,并按一定的方法進行推理。態(tài)度與價值觀目標:在簡單的推理過程中,使學生感受推理在生后中的廣泛應(yīng)用,初步培養(yǎng)學生有序地、全面地思考問題的意識。培養(yǎng)學生初步的觀察、分析、推理能力。四、說教學重點:經(jīng)歷簡單的推理過程,初步獲得一些簡單的推理經(jīng)驗。五、說教學難點:初步培養(yǎng)學生有序地、全面地思考問題的能力。

(五)課前準備: 1、鋪墊:讓學生和家長一起收集歷代有關(guān)合理安排的故事。 2、教具準備:圓形卡片、工序卡片、記錄表格和多媒體課件等。 學具準備:讓學生以小組為單位制作好圖形卡片和工序卡片。 二、說教法和學法 在教學方法上,為了使學生能輕松、愉快地理解優(yōu)化思想,根據(jù)學生的認知特點和規(guī)律,在本課的設(shè)計中,我使用了演示法和實驗法,通過課件的情境演示和實物的操作為學生創(chuàng)設(shè)情境,讓學生獨立思考,然后動手操作,互相交流,最后找出最優(yōu)方案的方式組織教學。 在學法方面,我設(shè)計了一系列貼近學生生活實際和年齡特點的教學活動,在這些活動中,著重以引導學生運用自主探究、合作探究兩種學習方式交替學習,讓他們真正以課堂的身份參與全程。并培養(yǎng)他們收集數(shù)據(jù)和分析處理數(shù)據(jù)的能力。

【設(shè)計意圖:先讓學生觀察、猜想,然后自己想辦法“證明”自己的猜想。這樣設(shè)計,給學生自主思考的時間和空間。在獨立思考的基礎(chǔ)上,再小組合作,把動腦思考與動手操作有機結(jié)合,把獨立思考與小組合作有機結(jié)合。有利于提高探索活動的實效性。】教師巡視,參與學生的操作和討論,找出有代表性的幾種“證明”方法。3.交流討論師:差不多了吧?能解釋為什么把4個蘋果放入3個抽屜,會出現(xiàn)總有一個抽屜中至少放2個蘋果這一現(xiàn)象了嗎?【學情預設(shè):】第一種:枚舉法請學生觀察不同的放法,能發(fā)現(xiàn)什么?引導學生發(fā)現(xiàn):每一種擺放情況,都一定有一個抽屜中至少放2個蘋果。也就是說不管怎么放,總有一個抽屜中至少放2個蘋果。第二種:假設(shè)法。還有沒有用不同的方法來驗證把4個蘋果放入3個抽屜,總有一個抽屜中至少放2個蘋果這一現(xiàn)象嗎?

情感態(tài)度與價值觀:1、能夠在自己獨立調(diào)查、分析、思考的基礎(chǔ)上,積極參與小組討論,敢于發(fā)表自己的意見。2、使學生能夠綜合應(yīng)用所學的知識解決生活中的合理存款問題,感受數(shù)學與現(xiàn)實生活的密切關(guān)系。3、使學生認識到數(shù)學應(yīng)用的廣泛性并培養(yǎng)學生的投資意識教學重點及難點1、使學生能自主探索合理存款的最大收益問題的方法。2、綜合應(yīng)用所學的知識認真地分析數(shù)量關(guān)系,正確地解決日常生活中相關(guān)的實際問題。二、教學教法分析1.教法設(shè)計為了更好的突出重點,突破難點,完成教學目標,我結(jié)合學生的心理特點,首先采用“情境法”引出問題,再“學生匯報”調(diào)查結(jié)果。接著“師生互動探究”收益最大的存款方式,學生在“自主探索討論”中掌握根據(jù)實際情況合理存款。同時利用多媒體等教學手段,激發(fā)學生的學習興趣,幫助學生突破難點,提高課堂教學效率。2.學法指導本節(jié)課我重點立足于學生的“匯報”和“設(shè)計”,并采用學生整理信息口述、小組討論,同桌討論,合作計算等多種方法,使學生真正成為教學的主體,體會參與的樂趣,成功的喜悅。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。