
解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結:此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質,解題的關鍵是根據條件證出△AFD≌△CEB.三、板書設計1.平行四邊形的判定定理(1)兩組對邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對邊平行且相等的四邊形是平行四邊形.在整個教學過程中,以學生看、想、議、練為主體,教師在學生仔細觀察、類比、想象的基礎上加以引導點撥.判定方法是學生自己探討發(fā)現的,因此,應用也就成了學生自發(fā)的需要,用起來更加得心應手.在證明命題的過程中,學生自然將判定方法進行對比和篩選,或對一題進行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

教學目標:1.知道二次函數與一元二次方程的聯(lián)系,提高綜合解決問題的能力.2.會求拋物線與坐標軸交點坐標,會結合函數圖象求方程的根.教學重點:二次函數與一元二次方程的聯(lián)系.預設難點:用二次函數與一元二次方程的關系綜合解題.☆ 預習導航 ☆一、鏈接:1.畫一次函數y=2x-3的圖象并回答下列問題(1)求直線y=2x-3與x軸的交點坐標; (2)解方程2x-3=0(3)說出直線y=2x-3與x軸交點的橫坐標和方程根的關系2.不解方程3x2-2x+4=0,此方程有 個根。二、導讀畫二次函數y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點坐標是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點的橫坐標與一元二次方程x2-5x+4=0的解有什么關系?(3)一元二次方程ax2+bx+c=0是二次函數y=ax2+bx+c當函數值y=0時的特殊情況.二次函數y=ax2+bx+c的圖象與x軸交點的橫坐標與一元二次方程ax2+bx+c=0的根有什么關系?

問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數,同樣根據“同角的余角相等”,鉛垂線所指的度數就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據測量數據,就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

(8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據市場調查,銷售量y(件)與銷售單價x(元)之間的函數關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

一、說教材《加減混合》是義務教育課程標準實驗教科書數學(人教版)二年級上冊第28頁的例3和例4。這個知識點是在上一課時《連加、連減》知識的基礎上進行的一個提升和知識點的整合。二、教學目標 1、結合具體的情境,讓學生經理探索加減混合運算的計算方法的過程。 2、使學生掌握100以內數加減混合運算的計算方法,并學習筆算的書寫格式,掌握簡便寫法。 3、讓學社在解決簡單問題的過程中,體會數學與生活的密切聯(lián)系。三、說教學重點難點重點:正確計算加減混合式題。 難點:優(yōu)化算法,正確計算加減混合式題。 四、說教學程序 根據本節(jié)課的特點,我準備采用演示法、比較法、談話法、討論法和練習法等多種教學方法,設計了如下教學過程:

仔細觀察兩位同學的算法,看看有什么不同之處?第一種是求解這道題的分步列式方法,第二種是列綜合算式解答的算式。引導學生對比分步算式與綜合算式,讓學生體會乘除混合運算的順序。組織學生討論:分數乘除混合運算怎樣計算?引導學生歸納:分數乘除混合運算中,遇到除以一個數時,只要乘以這個數的倒數,就可以把乘除混合運算轉化為分數連乘,再按照分數連乘的方法進行計算。經過計算,你有什么經驗要和同學們分享?想提醒大家注意什么?此處我盡量把解決問題的主動權交給學生,讓他們進行講解、討論、對比、分析,再通過同伴間的互相交流,找到知識之間的內在聯(lián)系。三、分層練習,鞏固應用本課練習的設計以趣味性和層次性為原則,分別安排了“基礎性練習”、“拓展性練習”和“趣味性練習”,檢驗學生的學習效果。1、基礎性練習:做課本自主練習第3題,讓學生自主完成,全班交流算法,目的是鞏固算法,反饋學習效果。

解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結:解答本題的關鍵是注意審題,將實際問題轉化為求函數問題,培養(yǎng)自己利用數學知識解答實際問題的能力.三、板書設計二次函數y=ax2+bx+c的圖象與性質1.二次函數y=ax2+bx+c的圖象與性質2.二次函數y=ax2+bx+c的應用

雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數關系式表示?問題2:如何畫出這樣的函數圖象?二、合作探究探究點:二次函數y=x2和y=-x2的圖象與性質【類型一】 二次函數y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數的圖象:(1)y=x2;(2)y=-x2.根據圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結:畫拋物線y=x2和y=-x2的圖象時,還可以根據它的對稱性,先用描點法描出拋物線的一側,再利用對稱性畫另一側.

變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數和一次函數的圖象在同一直角坐標系中,一次函數y=ax+c和二次函數y=ax2+c的圖象大致為()解析:∵一次函數和二次函數都經過y軸上的點(0,c),∴兩個函數圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數的圖象開口向上,一次函數的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數的圖象開口向下,一次函數的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結:熟記一次函數y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數的有關性質(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數y=ax2+c的圖象與三角形的綜合

(3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結:解決本題的關鍵是根據圖形特點選取一個合適的參數表示它們,得出關系式后運用函數性質來解.三、板書設計二次函數y=a(x-h(huán))2+k的圖象與性質1.二次函數y=a(x-h(huán))2+k的圖象與性質2.二次函數y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

1、完成練習十五第1題。(1)學生獨立完成計算。(2)指名板演,交流計算方法。提問:你是按照什么運算順序計算的?指出:分數加減混合運算的運算順序與整數相同,參與運算的幾個分數,可以分步通分,分步計算;也可以一次通分,再計算。計算結果要約成最簡分數。[練習十五里異分母分數加減混合運算的純計算題比較少,僅第1題里有4道。教學中適當補充三個分數加減混合運算的練習也是可以的,但不要耗費學生過多的學習精力。如果學生計算發(fā)生錯誤,要仔細分析原因,有針對性地采取有效的解決措施。]2、完成練習十五第2題。(1)讀題,理解題意,說說自己的思路。(2)學生獨立完成解答。10(3)+ 5(1)+ 6(1)= 30(9)+ 30(6)+ 30(5)= 30(20)= 3(2)(小時)(3)交流匯報,集體評價。3、完成練習十五第3題。(1)學生獨立完成(1)、(2)小題,說說自己是怎樣想的?(2)鼓勵學生根據題中的已知條件提出用分數加、減法計算的不同問題,可以是一步計算的,也可以是兩步計算的,并讓學生嘗試解決提出的一些問題。

1.使學生掌握用描點法畫出函數y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經歷探索二次函數y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質的過程,理解二次函數y=ax2+bx+c的性質。用描點法畫出二次函數y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數y=ax2+bx+c(a≠0)的性質以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數y=-4(x-2)2+1圖象與函數y=-4x2的圖象有什么關系?(函數y=-4(x-2)2+1的圖象可以看成是將函數y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

【教學目標】(一)教學知識點能夠利用描點法作出函數 的圖象,并根據圖象認識和理解二次函數 的性質;比較兩者的異同.(二)能力訓練要求:經歷探索二次函數 圖象的作法和性質的過程,獲得利用圖象研究函數性質的經驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數性質的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質。難點:描點法畫y=ax2的圖象,體會數與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數、一次函數、反比例函數的定義后,都借助圖像研究了它們的性質.而上節(jié)課我們所學的二次函數的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數y=x2入手去研究

然后能通過圖象找出變量的對應關系在圖象上的體現。3、做一做:課本P154第1小題,學生在課本上填表,讓學生通過填表,體會變量之間的相依關系。4、師生小結:和學生一起對剛才的三個例子進行總結,啟發(fā)學生思考三個例子的相同點和不同點,如表現形式不同,有圖象、表格、代數表達式。相同的有它們都是兩個變量,確定其中一個變量后就能相應確定另一個變量的值。從而使學生的認識上升一個高度,并掌握函數的概念5、課堂練習:完成課本P155隨堂練習。通過本練習的完成鞏固概念并會用概念去判斷兩個變量間的關系是否可看做函數。6、新課鞏固:以填空形式對本堂課進行小結,使學生對函數的概念及應用有一定記憶。并通過對最后問題的思考使學生意識到數學來自生活,并能應用于生活。

接下來學生類比有理數中相關概念,體會到了實數范圍內的相反數、倒數、絕對值的意義,并進一步掌握了實數的相反數、倒數、絕對值等知識。學生類比有理數中相關運算,體會到了實數范圍內的運算及運算律。并探討用數軸上的點來表示實數,將數和圖形聯(lián)系在一起,讓學生進一步領會數形結合的思想,利用數軸也可以直觀地比較兩個實數的大小。然后通過相關練習,檢測學生對實數相關知識的掌握情況。最后學生交流,互相補充,完成本節(jié)知識的梳理。布置作業(yè):所布置作業(yè)都是緊緊圍繞著“實數”的概念及運用。設計選作題是為了給學有余力的學生留出自由發(fā)展的空間。五、關于板書設計我將板書設計為“提綱式”。這樣設計主要是力求重點突出,能加深學生對重點知識的理解和掌握,便于記憶。

3)乘除運算①有理數的乘法法則:(老師給出,學生一起朗讀)1. 兩數相乘,同號得正,異號得負,并把絕對值相乘;2. 任何數與零相乘都得零;3. 幾個不等于零的數相乘,積的符號由負因數的個數決定,當負因數有奇數個數,積為負;當負因數的個數為偶數個時,積為正;4. 幾個有理數相乘,若其中有一個為零,積就為零。②有理數的除法法則:(老師提問,學生回答)1. 兩個有理數相除,同號得正,異號得負,并把絕對值相除;2. 除以一個數等于乘以這個數的倒數。③關系(老師給出)除法轉化為乘法進行運算。

大家好,今天我說課的內容是人教版義務教育課程標準實驗教科書數學一年級上冊第五單元中的《加減混合》。一、教材分析(一)教學內容及重點難點與上一節(jié)課學習的連加、連減相同,加減混合也是由兩個計算步驟構成的一個連續(xù)的口算過程,但不同的是對于一年級學生來說既要記住第一步計算結果,又要在第二步計算時應對跟第一步不同的運算方法有一定的難度。所以掌握加減混合運算過程是本課的重點和難點之一。 另一方面,教材有意地呈現了對比性很強的兩組情境圖幫助學生學習,情境圖既有現實性和趣味性,又能直觀地展示加減混合算式的計算過程和算理,充分體現數學來源于生活,又巧妙地利用生活經驗來理解數學知識。但是教材是第一次出現組合型的情境圖,學生對圖中原來物體的個數很難理解,所以如何指導學生學會看這種組合型的情境圖也是本節(jié)課教學的另一重難點。

“整數乘法運算定律推廣到小數乘法”是在學生已經掌握了小數乘法計算、整數乘法運算定律的基礎上進行教學的。教材通過幾組算式,讓學生計算出○的左右兩邊算式的得數,找出它們的相等關系,總結出整數的運算定律對小數同樣適用。學好這部分內容,不僅培養(yǎng)學生的邏輯思維能力,而且以后能用本課所學的使一些小數的計算簡便,也為以后學習用不同方法解答應用題起著積極的推動作用。2、教學目標的確定:根據教材特點,依據數學課程標準的要求及學生實際,我確定本課教學目標如下:(1)知識能力目標:理解整數乘法運算定律對于小數乘法用樣適用,并能應用這些定律進行一些簡便計算。(2)過程方法目標:引導學生在經歷猜想、驗證等數學活動中,發(fā)展學生的思維能力。(3)情感態(tài)度目標:通過小組合作學習,培養(yǎng)學生進行交流的能力與合作意識,體驗到解決問題策略的多樣性。結合相關內容,滲透“事物間是普遍聯(lián)系”的觀點,對學生進行辨證唯物主義的啟蒙教育。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。