提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大初中八年級數(shù)學下冊一元一次不等式與一次函數(shù)的關系教案

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)1教案

    解:(1)根據(jù)題意,可得y=100025x,化簡得y=40x;(2)根據(jù)題設可知自變量x的取值范圍為0<x<85.方法總結(jié):反比例函數(shù)的自變量取值范圍是全體非零實數(shù),但在解決實際問題的過程中,自變量的取值范圍要根據(jù)實際情況來確定.解題過程中應該注意對題意的正確理解.三、板書設計反比例函數(shù)概念:一般地,如果兩個變量x,y之間 的對應關系可以表示成y=kx(k 為常數(shù),k≠0)的形式,那么稱y 是x的反比例函數(shù),反比例函數(shù) 的自變量x不能為0確定表達式:待定系數(shù)法建立反比例函數(shù)的模型結(jié)合實例引導學生了解所討論的函數(shù)的表達形式,形成反比例函數(shù)概念的具體形象,從感性認識到理性認識的轉(zhuǎn)化過程,發(fā)展學生的思維.利用多媒體創(chuàng)設大量生活情境,讓學生體驗數(shù)學來源于生活實際,并為生活實際服務,讓學生感受數(shù)學有用,從而培養(yǎng)學生學習數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)2教案

    2、某村有耕地346.2公頃,人口數(shù)量n逐年發(fā)生變化,那么該村人均占有耕地面積m(公頃/人)是全村人口數(shù)n的函數(shù)嗎?是反比例函數(shù)嗎?為什么?3、y是x的反比例函數(shù),下表給出了x與y的一些值: (1)寫出這個反比例函數(shù)的表達式;(2)根據(jù)表達式完成上表。教師巡視個別輔導,學生完畢教師給予評估肯定。II鞏固練習:限時完成課本“隨堂練習”1-2題。教師并給予指導。七、總結(jié)、提高。(結(jié)合板書小結(jié))今天通過生活中的例子,探索學習了反比例函數(shù)的概念,我們要掌握反比例函數(shù)是針對兩種變化量,并且這兩個變化的量可以寫成 (k為常數(shù),k≠0)同時要注意幾點::①常數(shù)k≠0;②自變量x不能為零(因為分母為0時,該式?jīng)]意義);③當 可寫為 時注意x的指數(shù)為—1。④由定義不難看出,k可以從兩個變量相對應 的任意一對對應值的積來求得,只要k確定了,這個函數(shù)就確定了。

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=a(x-h)2+k的圖象與性質(zhì)1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=a(x-h)2+k的圖象與性質(zhì)1教案

    (3)設點A的坐標為(m,0),則點B的坐標為(12-m,0),點C的坐標為(12-m,-16m2+2m),點D的坐標為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關系式后運用函數(shù)性質(zhì)來解.三、板書設計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關系3.二次函數(shù)y=a(x-h(huán))2+k的應用要使課堂真正成為學生展示自我的舞臺,還學生課堂學習的主體地位,教師要把激發(fā)學生學習熱情和提高學生學習能力放在教學首位,為學生提供展示自己聰明才智的機會,使課堂真正成為學生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導今后的教學.

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1教案

    解析:(1)已知拋物線解析式y(tǒng)=ax2+bx+0.9,選定拋物線上兩點E(1,1.4),B(6,0.9),把坐標代入解析式即可得出a、b的值,繼而得出拋物線解析式;(2)求出y=1.575時,對應的x的兩個值,從而可確定t的取值范圍.解:(1)由題意得點E的坐標為(1,1.4),點B的坐標為(6,0.9),代入y=ax2+bx+0.9,得a+b+0.9=1.4,36a+6b+0.9=0.9,解得a=-0.1,b=0.6.故所求的拋物線的解析式為y=-0.1x2+0.6x+0.9;(2)157.5cm=1.575m,當y=1.575時,-0.1x2+0.6x+0.9=1.575,解得x1=32,x2=92,則t的取值范圍為32<t<92.方法總結(jié):解答本題的關鍵是注意審題,將實際問題轉(zhuǎn)化為求函數(shù)問題,培養(yǎng)自己利用數(shù)學知識解答實際問題的能力.三、板書設計二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)1.二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2.二次函數(shù)y=ax2+bx+c的應用

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2+bx+c的圖象與性質(zhì)2教案

    1.使學生掌握用描點法畫出函數(shù)y=ax2+bx+c的圖象。2.使學生掌握用圖象或通過配方確定拋物線的開口方向、對稱軸和頂點坐標。讓學生經(jīng)歷探索二次函數(shù)y=ax2+bx+c的圖象的開口方向、對稱軸和頂點坐標以及性質(zhì)的過程,理解二次函數(shù)y=ax2+bx+c的性質(zhì)。用描點法畫出二次函數(shù)y=ax2+bx+c的圖象和通過配方確定拋物線的對稱軸、頂點坐標理解二次函數(shù)y=ax2+bx+c(a≠0)的性質(zhì)以及它的對稱軸(頂點坐標分別是x=-b2a、(-b2a,4ac-b24a)一、提出問題1.你能說出函數(shù)y=-4(x-2)2+1圖象的開口方向、對稱軸和頂點坐標嗎?(函數(shù)y=-4(x-2)2+1圖象的開口向下,對稱軸為直線x=2,頂點坐標是(2,1)。2.函數(shù)y=-4(x-2)2+1圖象與函數(shù)y=-4x2的圖象有什么關系?(函數(shù)y=-4(x-2)2+1的圖象可以看成是將函數(shù)y=-4x2的圖象向右平移2個單位再向上平移1個單位得到的)

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)2教案

    【教學目標】(一)教學知識點能夠利用描點法作出函數(shù) 的圖象,并根據(jù)圖象認識和理解二次函數(shù) 的性質(zhì);比較兩者的異同.(二)能力訓練要求:經(jīng)歷探索二次函數(shù) 圖象的作法和性質(zhì)的過程,獲得利用圖象研究函數(shù)性質(zhì)的經(jīng)驗.(三)情感態(tài)度與價值觀:通過學生自己的探索活動,達到對拋物線自身特點的認識和對二次函數(shù)性質(zhì)的理解. 【重、難點】重點 :會畫y=ax2的圖象,理解其性質(zhì)。難點:描點法畫y=ax2的圖象,體會數(shù)與形的相互聯(lián)系。 【導學流程】 一、自主預習(用時15分鐘)1.創(chuàng)設教學情境我們在教學了正比例函數(shù)、一次函數(shù)、反比例函數(shù)的定義后,都借助圖像研究了它們的性質(zhì).而上節(jié)課我們所學的二次函數(shù)的圖象是什么呢?本節(jié)課我們將從最簡單的二次函數(shù)y=x2入手去研究

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)1教案

    雨后天空的彩虹、河上架起的拱橋等都會形成一條曲線.問題1:這些曲線能否用函數(shù)關系式表示?問題2:如何畫出這樣的函數(shù)圖象?二、合作探究探究點:二次函數(shù)y=x2和y=-x2的圖象與性質(zhì)【類型一】 二次函數(shù)y=x2和y=-x2的圖象的畫法及特點在同一平面直角坐標系中,畫出下列函數(shù)的圖象:(1)y=x2;(2)y=-x2.根據(jù)圖象分別說出拋物線(1)(2)的對稱軸、頂點坐標、開口方向及最高(低)點坐標.解析:利用列表、描點、連線的方法作出兩個函數(shù)的圖象即可.解:列表如下:x y) -2 -1 0 1 2y=x2 4 1 0 1 4 y=-x2 -4 -1 0 -1 -4 描點、連線可得圖象如下:(1)拋物線y=x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向上,最低點坐標為(0,0);(2)拋物線y=-x2的對稱軸為y軸,頂點坐標為(0,0),開口方向向下,最高點坐標為(0,0).方法總結(jié):畫拋物線y=x2和y=-x2的圖象時,還可以根據(jù)它的對稱性,先用描點法描出拋物線的一側(cè),再利用對稱性畫另一側(cè).

  • 北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2和y=ax2+c的圖象與性質(zhì)1教案

    北師大初中九年級數(shù)學下冊二次函數(shù)y=ax2和y=ax2+c的圖象與性質(zhì)1教案

    變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練”第5題【類型二】 在同一坐標系中判斷二次函數(shù)和一次函數(shù)的圖象在同一直角坐標系中,一次函數(shù)y=ax+c和二次函數(shù)y=ax2+c的圖象大致為()解析:∵一次函數(shù)和二次函數(shù)都經(jīng)過y軸上的點(0,c),∴兩個函數(shù)圖象交于y軸上的同一點,故B選項錯誤;當a>0時,二次函數(shù)的圖象開口向上,一次函數(shù)的圖象從左向右上升,故C選項錯誤;當a<0時,二次函數(shù)的圖象開口向下,一次函數(shù)的圖象從左向右下降,故A選項錯誤,D選項正確.故選D.方法總結(jié):熟記一次函數(shù)y=kx+b在不同情況下所在的象限,以及熟練掌握二次函數(shù)的有關性質(zhì)(開口方向、對稱軸、頂點坐標等)是解決問題的關鍵.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第4題【類型三】 二次函數(shù)y=ax2+c的圖象與三角形的綜合

  • 北師大初中八年級數(shù)學下冊中心對稱教案

    北師大初中八年級數(shù)學下冊中心對稱教案

    探究點三:作中心對稱圖形如圖,網(wǎng)格中有一個四邊形和兩個三角形.(1)請你畫出三個圖形關于點O的中心對稱圖形;(2)將(1)中畫出的圖形與原圖形看成一個整體圖形,請寫出這個整體圖形對稱軸的條數(shù);這個整體圖形至少旋轉(zhuǎn)多少度能與自身重合?解:(1)如圖所示;(2)這個整體圖形的對稱軸有4條;此圖形最少旋轉(zhuǎn)90°能與自身重合.三、板書設計1.中心對稱如果把一個圖形繞著某一點旋轉(zhuǎn)180°,它能夠與另一個圖形重合,那么就說這兩個圖形關于這個點對稱或中心對稱.2.中心對稱圖形把一個圖形繞著某一點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能與原來的圖形重合,那么這個圖形叫做中心對稱圖形.教學過程中,強調(diào)學生自主探索和合作交流,結(jié)合圖形,多觀察,多歸納,體會識別中心對稱圖形的方法,理解中心對稱圖形的特征.

  • 北師大初中八年級數(shù)學下冊第六章復習教案

    北師大初中八年級數(shù)學下冊第六章復習教案

    解1:設該多邊形邊數(shù)為n,這個外角為x°則 因為n為整數(shù),所以 必為整數(shù)。即: 必為180°的倍數(shù)。又因為 ,所以 解2:設該多邊形邊數(shù)為n,這個外角為x。又 為整數(shù), 則該多邊形為九邊形。第二環(huán)節(jié):隨堂練習,鞏固提高1.七邊形的內(nèi)角和等于______度;一個n邊形的內(nèi)角和為1800°,則n=________。2.多邊形的邊數(shù)每增加一條,那么它的內(nèi)角和就增加 。3.從多邊形的一個頂點可以畫7條對角線,則這個n邊形的內(nèi)角和為( )A 1620° B 1800° C 900° D 1440°4.一個多邊形的各個內(nèi)角都等于120°,它是( )邊形。5.小華想在2012年的元旦設計一個內(nèi)角和是2012°的多邊形做窗花裝飾教室,他的想法( )實現(xiàn)。(填“能”與“不能”)6. 如圖4,要測量A、B兩點間距離,在O點打樁,取OA的中點 C,OB的中點D,測得CD=30米,則AB=______米.

  • 北師大初中八年級數(shù)學下冊第四章復習教案

    北師大初中八年級數(shù)學下冊第四章復習教案

    在因式分解的幾種方法中,提取公因式法師最基本的的方法,學生也很容易掌握。但在一些綜合運用的題目中,學生總會易忘記先觀察是否有公因式,而直接想著運用公式法分解。這樣直接導致有些題目分解錯誤,有些題目分解不完全。所以在因式分解的步驟這一塊還要繼續(xù)加強。其實公式法分解因式。學生比較會將平方差和完全平方式混淆。這是對公式理解不透徹,彼此的特征區(qū)別還未真正掌握好。大體上可以從以下方面進行區(qū)分。如果是兩項的平方差則在提取公因式后優(yōu)先考慮平方差公式。如果是三項則優(yōu)先考慮完全平方式進行因式分解。培養(yǎng)學生的整體觀念,靈活運用公式的能力。注重總結(jié)做題步驟。這章節(jié)知識看起來很簡單,但操作性很強的,相同或者相似的式子比較熟悉而需要轉(zhuǎn)化的或者多種公式混合使用的式子就難以入手,基礎不好的學生需要手把手的教,因此,應該引導學生總結(jié)多項式因式分解的一般步驟①如果多項式的各項有公因式,那么先提公因式;

  • 北師大初中八年級數(shù)學下冊第二章復習教案

    北師大初中八年級數(shù)學下冊第二章復習教案

    例1 解不等式x> x-2,并將其解集表示在數(shù)軸上.例2 解不等式組 .例3 小明放學回家后,問爸爸媽媽小牛隊與太陽隊籃球比賽的結(jié)果.爸爸說:“本場比賽太陽隊的納什比小牛隊的特里多得了12分.”媽媽說:“特里得分的兩倍與納什得分的差大于10;納什得分的兩倍比特里得分的三倍還多.”爸爸又說:“如果特里得分超過20分,則小牛隊贏;否則太陽隊贏.”請你幫小明分析一下.究竟是哪個隊贏了,本場比賽特里、納什各得了多少分?例4 暑假期間,兩名家長計劃帶領若干名學生去旅游,他們聯(lián)系了報價均為每人500元的兩家旅行社,經(jīng)協(xié)商,甲旅行社的優(yōu)惠條件是:兩名家長全額收費,學生都按七折收費;乙旅行社的優(yōu)惠條件是家長、學生都按八折收費.假設這兩位家長帶領x名學生去旅游,他們應該選擇哪家旅行社?

  • 北師大初中八年級數(shù)學下冊第五章復習教案

    北師大初中八年級數(shù)學下冊第五章復習教案

    教學效果:部分學生能舉一反三,較好地掌握分式方程及其應用題的有關知識與解決生活中的實際問題等基本技能.第六環(huán)節(jié) 課后練習四、教學反思數(shù)學來源于生活,并應用于生活,讓學生用數(shù)學的眼光觀察生活,除了用所學的數(shù)學知識解決一些生活問題外,還可以從數(shù)學的角度來解釋生活中的一些現(xiàn)象,面向生活是學生發(fā)展的“源頭活水”.在解決實際生活問題的實例選擇上,我們盡量選擇學生熟悉的實例,如:學生身邊的事,購物,農(nóng)業(yè),工業(yè)等方面,讓學生真切地理解數(shù)學來源于生活這一事實。有些學生對應用題有一種心有余悸的感覺,其關鍵是面對應用題不知怎樣分析、怎樣找到等量關系。在教學中,如果采用列表的方法可幫助學生審題、找到等量關系,從而學會分析問題??赡軐W生最初并不適應這種做法,可采用分步走的方法,首先,讓學生從一些簡單、類似的問題中模仿老師的分析方法,然后在練習中讓學生悟出解決問題的竅門,學會舉一反三,最后達到能獨立解決問題的目的。

  • 北師大初中八年級數(shù)學下冊角平分線教案

    北師大初中八年級數(shù)學下冊角平分線教案

    解:(1)∵AB、CD互相垂直平分,∴OC=OD,AO=OB,且AC=BC=AD=BD;(2)OE=OF,理由如下:在△AOC和△AOD中,∵AC=AD,OC=OD,AO=AO,∴△AOC≌△AOD(SSS),∴∠CAO=∠DAO.又∵OE⊥AC,OF⊥AD,∴OE=OF.方法總結(jié):本題是線段垂直平分線的性質(zhì)和角平分線的性質(zhì)的綜合,掌握它們的適用條件和表示方法是解題的關鍵.三、板書設計1.角平分線的性質(zhì)定理角平分線上的點到這個角的兩邊的距離相等.2.角平分線的判定定理在一個角的內(nèi)部,到角的兩邊距離相等的點在這個角的平分線上.本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練.

  • 北師大初中八年級數(shù)學下冊旋轉(zhuǎn)作圖教案

    北師大初中八年級數(shù)學下冊旋轉(zhuǎn)作圖教案

    解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉(zhuǎn)90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉(zhuǎn)90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結(jié):本題是利用旋轉(zhuǎn)的特征:旋轉(zhuǎn)前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉(zhuǎn)作圖2.旋轉(zhuǎn)圖形的應用教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉(zhuǎn)的性質(zhì)作圖.

  • 北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    北師大初中八年級數(shù)學下冊等腰三角形的判定與反證法教案

    方法總結(jié):本題結(jié)合三角形內(nèi)角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結(jié)論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結(jié)論成立.在假設結(jié)論不成立時要注意考慮結(jié)論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結(jié)論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結(jié)論成立.解決幾何證明題時,應結(jié)合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結(jié)論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結(jié)論出發(fā),探尋結(jié)論成立所需的條件)的方法.

  • 《一次函數(shù)與二元一次方程組》說課稿

    《一次函數(shù)與二元一次方程組》說課稿

    一、 說教材、目標這部分內(nèi)容建立在學生對一元一次方程、二元一次方程組和一元一次不等式等以一次(線性)運算為基礎的數(shù)學模型的已有認識上,從變化和對應的角度對一次運算進行更深入的討論。從函數(shù)的角度對一次方程(組)、不等式重新進行了分析,這種再認識不是對原有知識的簡單回顧復習,而是站在更高起點上的動態(tài)分析,是用一次函數(shù)將上述三個不同的數(shù)學對象起來認識,發(fā)揮函數(shù)對相關內(nèi)容的統(tǒng)領作用。通過這部分內(nèi)容的學習,不僅可以加深學生對方程(組)、不等式等數(shù)學對象的理解,而且可以增強對相關知識的內(nèi)在聯(lián)系的認識,加強知識間橫向與縱向的融會貫通,提高靈活分析和解決問題的能力。本節(jié)課是在前兩節(jié)課已經(jīng)學完了一次函數(shù)與一元一次方程、一元一次不等式的聯(lián)系之后,對一次函數(shù)與二元一次方程(組)關系的探索,是對一次函數(shù)及其相關內(nèi)容更深入、更全面的學習,也是對這部分內(nèi)容的一個提升和總結(jié)。

  • 北師大初中七年級數(shù)學下冊積的乘方教案

    北師大初中七年級數(shù)學下冊積的乘方教案

    【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉(zhuǎn)化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結(jié):對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉(zhuǎn)化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大小:213×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結(jié):利用積的乘方,轉(zhuǎn)化成同底數(shù)的同指數(shù)冪是解答此類問題的關鍵.三、板書設計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學過程中教師可以采用與前面相同的方式展開教學.教師在講解積的乘方公式的應用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學生的運算速度和應用能力,也可以補充講解:當n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當n為偶數(shù)時,(-a)n=an(n為正整數(shù))

  • 北師大初中七年級數(shù)學下冊冪的乘方教案

    北師大初中七年級數(shù)學下冊冪的乘方教案

    方法總結(jié):本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關鍵.【類型三】 逆用冪的乘方結(jié)合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結(jié):根據(jù)冪的乘方的逆運算進行轉(zhuǎn)化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運用冪的乘方公式的探究方式和前節(jié)類似,因此在教學中可以利用該優(yōu)勢展開教學,在探究過程中可以進一步發(fā)揮學生的主動性,盡可能地讓學生在已有知識的基礎上,通過自主探究,獲得冪的乘方運算的感性認識,進而理解運算法則

  • 北師大初中七年級數(shù)學下冊頻率的穩(wěn)定性教案

    北師大初中七年級數(shù)學下冊頻率的穩(wěn)定性教案

    解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系

上一頁12345678910111213下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。