提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中政治必修3世界文化的多樣性說課稿

  • 新人教版高中英語必修2Unit 5 Music-Reading For Writing教案一

    新人教版高中英語必修2Unit 5 Music-Reading For Writing教案一

    (4)Now we have heard a number of outstanding speeches ... 我們已經(jīng)聆聽了許多精彩的發(fā)言……(5)Because we wanted the nations of the world, working together, to deal with ... 因?yàn)槲覀兿M澜绺鲊鴪F(tuán)結(jié)起來去應(yīng)對(duì)……(6)And if we do not act ... 如果我們不采取行動(dòng)……(7)Now, I share the concerns that have been expressed ... 我也同意對(duì)于……表達(dá)的擔(dān)心(8)Let us show the world that by working together we can ... 讓我們告訴全世界,通過一起努力我們可以……(9)It is now time for us to ... 是時(shí)候我們……(10)And I have always wished that ... 我一直希望……(11)Thank you for letting me share this day with me.感謝你們和我共度這一天。實(shí)踐演練:假如你是高中生李華,你校將舉辦一次以“音樂”為主題的演講比賽,請(qǐng)你按照主題,寫下你的演講稿。注意:詞數(shù)100左右。First of all, thank you for listening to my speech. My topic is: love music like love yourself.Music is like the air we need to maintain our normal lives around us. You can't imagine how terrible a world without music would be. Movies and TV shows have no music, only dry conversations and scenes; mobile phones only vibrations; streets only noisy crowds; cafes, western restaurants only depressed meals. What a terrible world it is!As a student, I hope we all can enjoy the fun brought by music in our spare time. Instead of just listening to music, we can even make our own music. Let's enjoy the fun of music!Thanks again for your attention!

  • 《說“木葉”》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    《說“木葉”》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    一、說教材《說“木葉”》這篇文學(xué)論文位于統(tǒng)編版高中語文必修下冊(cè)第三單元。本單元對(duì)應(yīng)課程標(biāo)準(zhǔn)的學(xué)習(xí)任務(wù)群是“實(shí)用性閱讀與交流”,人文主題是“探索與創(chuàng)新”,語文素養(yǎng)是“學(xué)習(xí)閱讀知識(shí)性讀物,理清文章思路,學(xué)習(xí)闡釋說明、邏輯推理的方法,體會(huì)語言的嚴(yán)謹(jǐn)準(zhǔn)確,發(fā)展科學(xué)思維”?!墩f“木葉”》提出了中國古典詩歌為何用“‘木葉’而不用‘樹葉’、又由‘木葉’發(fā)展為‘落木’的疑問”,繼而分析了“木”字的兩個(gè)藝術(shù)特征,解決了上述疑問,闡發(fā)了中國古典詩歌語言的暗示性。二、說學(xué)情高一年級(jí)下學(xué)期的學(xué)生已經(jīng)接觸過不少實(shí)用性論說類文本,例如統(tǒng)編版九年級(jí)上冊(cè)《論教養(yǎng)》《談創(chuàng)造性思維》等文章。本學(xué)段的學(xué)生已經(jīng)掌握了“論點(diǎn)、論據(jù)、論證”的相關(guān)知識(shí),并且發(fā)展了一定的邏輯思維能力,這為《說“木葉”》的講授提供了學(xué)習(xí)支架。但《說“木葉”》這篇文學(xué)論文,篇幅長達(dá)三千字,使用了專業(yè)術(shù)語,運(yùn)用大量詩詞舉例,這些是給學(xué)生閱讀造成困難的原因。

  • 《說“木葉”》說課稿(一) 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    《說“木葉”》說課稿(一) 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    這五個(gè)問題,主要從學(xué)情出發(fā),由淺入深,從感知到理論,培養(yǎng)學(xué)生的鑒賞能力。第三環(huán)節(jié):延伸探究、展示成果(多媒體顯示)走出文本,引入課外同類文學(xué)現(xiàn)象,讓學(xué)生能夠觸類旁通,舉一反三,把教材作為一個(gè)例子,讓學(xué)生在深入的文學(xué)鑒賞中再次獲得語言的審美。同學(xué)們初步掌握了文學(xué)語言具有暗示性的性質(zhì)后,還需鞏固、提升鑒賞能力!這里我采取的方法是:引導(dǎo)學(xué)生認(rèn)真閱讀文本,經(jīng)小組合作探究后,得出本組的鑒賞成果并加以展示,這里重在培養(yǎng)學(xué)生的理解能力和分析綜合能力。問題是:1、 請(qǐng)結(jié)合下面三首詞的意境,選用殘紅、落紅、亂紅填空。2、 閱讀下面這些句子,理解“燕”在詞語中的暗示意義。該環(huán)節(jié)充分體現(xiàn)了 “ 教師為主導(dǎo),學(xué)生為主體”的原則。老師的適時(shí)點(diǎn)撥,讓學(xué)生的鑒賞思路更加清晰。學(xué)生通過合作探究,理解能力和分析綜合能力得到了提升。

  • 《一個(gè)消逝了的山村》說課稿  2021—2022學(xué)年統(tǒng)編版高中語文選擇性必修下冊(cè)

    《一個(gè)消逝了的山村》說課稿 2021—2022學(xué)年統(tǒng)編版高中語文選擇性必修下冊(cè)

    這幾段內(nèi)容傳達(dá)出的是“要敬畏生命,尊重生命;更要敬畏大自然,尊重大自然,愛護(hù)大自然”的主旨內(nèi)涵,因此讓學(xué)生通過自由朗讀的方式,再次體會(huì)馮至對(duì)這個(gè)消逝了的山村的細(xì)致的美好的描繪,感悟馮至傳達(dá)出的對(duì)生命,對(duì)自然的理解和思考。5.最后一個(gè)自然段的解讀依然是交給學(xué)生,先齊讀課文,再讓學(xué)生自主分享自己的體會(huì)或疑惑。但在這一環(huán)節(jié)我也設(shè)計(jì)了兩個(gè)我認(rèn)為必須解答的兩個(gè)問題,一是怎么理解“在風(fēng)雨如晦的時(shí)刻”;二是“意味不盡的關(guān)聯(lián)”是指什么。我認(rèn)為這兩個(gè)問題一個(gè)涉及到寫作背景,一個(gè)涉及到對(duì)全文主旨的一個(gè)整體把握,能夠進(jìn)一步幫助學(xué)生理解散文的深刻內(nèi)涵和主旨,讓學(xué)生有意識(shí)的在閱讀散文過程中通過背景知識(shí)進(jìn)行理解。既尊重學(xué)生的個(gè)性化解讀,又能夠讓學(xué)生有意義學(xué)習(xí),完成預(yù)設(shè)的教學(xué)目標(biāo)。如果學(xué)生沒有提到這兩處,那我就需要做出補(bǔ)充。

  • 兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩點(diǎn)間的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個(gè)大型小區(qū),現(xiàn)在計(jì)劃在公路上某處建一個(gè)公交站點(diǎn)C,以方便居住在兩個(gè)小區(qū)住戶的出行.如何選址能使站點(diǎn)到兩個(gè)小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點(diǎn)A、B,如何求A、B兩點(diǎn)間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點(diǎn)間的距離求出任意兩點(diǎn)間距離?探究.當(dāng)x1≠x2,y1≠y2時(shí),|P1P2|=?請(qǐng)簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點(diǎn)P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個(gè)公式嗎?2.兩點(diǎn)間距離公式的理解(1)此公式與兩點(diǎn)的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時(shí),|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時(shí),|P1P2|=|y2-y1|.

  • 點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    點(diǎn)到直線的距離公式教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點(diǎn)式得直線BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線l的距離相等,求直線l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線l過點(diǎn)P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時(shí),A,B兩點(diǎn)到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩條平行線間的距離教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點(diǎn)間的距離公式,點(diǎn)到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測(cè)量的什么距離?A.兩平行線的距離 B.點(diǎn)到直線的距離 C. 點(diǎn)到點(diǎn)的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點(diǎn)P(x_0,y_0 ),,點(diǎn)P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點(diǎn)到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點(diǎn)到直線的距離.1.原點(diǎn)到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    兩直線的交點(diǎn)坐標(biāo)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.直線2x+y+8=0和直線x+y-1=0的交點(diǎn)坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點(diǎn)坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點(diǎn)在x軸上,可設(shè)交點(diǎn)坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,若l1⊥l2,則點(diǎn)P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點(diǎn)P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點(diǎn)P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點(diǎn). 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對(duì)于m的任意實(shí)數(shù)值都成立,根據(jù)恒等式的要求,m的一次項(xiàng)系數(shù)與常數(shù)項(xiàng)均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的一般方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    切線方程的求法1.求過圓上一點(diǎn)P(x0,y0)的圓的切線方程:先求切點(diǎn)與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點(diǎn)斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點(diǎn)P(x0,y0)的圓的切線時(shí),常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時(shí)的切線有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點(diǎn)坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的兩點(diǎn)式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:①過原點(diǎn)時(shí),直線方程為y=-34x.②直線不過原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點(diǎn)P(3,m)在過點(diǎn)A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點(diǎn)式方程得,過A,B兩點(diǎn)的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點(diǎn)為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓與圓的位置關(guān)系教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的點(diǎn)斜式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點(diǎn)P(2,1)且與直線l2:y=x+1垂直,則l1的點(diǎn)斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點(diǎn)是 . 【答案】(-1,2)6.直線l經(jīng)過點(diǎn)P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點(diǎn)斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點(diǎn)斜式方程為y-4=-3(x-3).

  • 《登高》說課稿(三)2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《登高》說課稿(三)2022-2023學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    ④結(jié)合杜甫的身世遭遇,你認(rèn)為這里的“艱難苦恨”包含著哪些情感?第五步是拓展延伸對(duì)比閱讀李白的《夢(mèng)游天姥吟留別》,討論詩體形式與詩人情感抒發(fā)之間的關(guān)系。第六步是達(dá)標(biāo)檢測(cè)我將緊扣考試題型,以理解性默寫的形式,當(dāng)堂檢驗(yàn)學(xué)生對(duì)詩歌的掌握情況第三環(huán):課后跟蹤課后作業(yè):①背誦并默寫詩歌②鑒賞詩歌《秋興八首》 (其一) ,找出詩歌所用意象,體會(huì)意境,表達(dá)情感。玉露凋傷楓樹林,巫山巫峽氣蕭森。江間波浪兼天涌,塞上風(fēng)云接地陰。叢菊兩開他日淚,孤舟一系故園心。寒衣處處催刀尺,搗衣砧上拂還來。最后,我來說一說我的板書設(shè)計(jì),我的板書設(shè)計(jì)簡潔明了,清晰直觀,能夠突出本課的重點(diǎn)和難點(diǎn)。以上就是我本說課的全部內(nèi)容,再次感謝各位考官的聆聽!

  • 《鄉(xiāng)土中國》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《鄉(xiāng)土中國》說課稿 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    活動(dòng)一:整體感知,梳理要點(diǎn)新修訂《課程標(biāo)準(zhǔn)》指出:重視學(xué)生的思維發(fā)展與提升,如直覺思維、形象思維、抽象思維等。為此,我設(shè)計(jì)了“梳理要點(diǎn)、繪制思維導(dǎo)圖”兩個(gè)部分,引導(dǎo)學(xué)生在閱讀中整體感知文本。1、梳理章節(jié)要點(diǎn),明確內(nèi)容要素《家族》:以西洋家庭特點(diǎn)為對(duì)照,分析中國鄉(xiāng)土社會(huì)家庭的特點(diǎn)?!赌信袆e》:主要討論鄉(xiāng)土社會(huì)感情定向的問題,偏向同性交往,遏制男女交往。2、展示思維導(dǎo)圖,凸顯整體關(guān)聯(lián)引導(dǎo)同學(xué)制作多種思維導(dǎo)圖:流程圖式、樹狀圖式、爪形圖式活動(dòng)二:走進(jìn)文本,深化認(rèn)知新修訂《課程標(biāo)準(zhǔn)》指出:學(xué)會(huì)語文運(yùn)用的方法,有效地提高語文能力,并在學(xué)習(xí)語言文字運(yùn)用的過程中促進(jìn)方法、習(xí)慣及情感、態(tài)度與價(jià)值觀的綜合發(fā)展。所以在教學(xué)中我引導(dǎo)學(xué)生掌握整本書閱讀的基本方法,即以速讀、跳讀的方式地毯式地搜索書中關(guān)于“中西家庭差別”的內(nèi)容,得出鄉(xiāng)土家族的六個(gè)方面的特點(diǎn),學(xué)生分別結(jié)合生活中的現(xiàn)象闡述了這六個(gè)方面的特點(diǎn)在生活中的具體體現(xiàn)。

  • 《阿房宮賦》說課稿(二)  2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    《阿房宮賦》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文必修下冊(cè)

    一、說教材(一)教材的特點(diǎn)及在本單元的地位《阿房宮賦》位于人教版老教材《中國古代詩歌散文欣賞》第四單元“創(chuàng)造形象,詩人有別”主題?!栋⒎繉m賦》為晚唐文賦,賦講究鋪陳和聲韻,而本文不但有華美的語言、和諧的聲律,還有深刻的思想內(nèi)涵,本文在本單元中有極高的欣賞價(jià)值。語文教學(xué)大綱中要求學(xué)生“具有初步文學(xué)鑒賞能力和閱讀淺易文言文的能力”。本文從文字、結(jié)構(gòu)和意義等各方面來說都是非常值得我們來鑒賞的。二、說學(xué)情學(xué)生在初中階段已學(xué)過杜牧的詩作,對(duì)杜牧其人及其作品的諷諫風(fēng)格已有初步了解。然而本賦篇幅較長,學(xué)生閱讀能力尚淺,難以深刻理解賦文“鋪采摛文”的寫作藝術(shù)。通過誦讀吟詠、教師點(diǎn)撥,把握本賦的語言風(fēng)格。

  • 《念奴嬌 赤壁懷古》說課稿(一) 統(tǒng)編版高中語文必修上冊(cè)

    《念奴嬌 赤壁懷古》說課稿(一) 統(tǒng)編版高中語文必修上冊(cè)

    一、說教材:(一)教材的地位和作用《念奴嬌﹒赤壁懷古》是部編版高中語文教材必修上冊(cè)第9課的課文。它與辛棄疾的《永遇樂﹒京口北固亭懷古》,李清照的《聲聲慢》共同入選該冊(cè)教材第三單元閱讀古詩詞,感悟人生這一學(xué)習(xí)專題。本詞是蘇軾的代表作,也是豪放詞的名篇,在古詩詞教學(xué)中占有重要的地位。優(yōu)美的詩詞是中華傳統(tǒng)文化的瑰寶,學(xué)習(xí)這些詩詞的目的在于培養(yǎng)學(xué)生鑒賞古代詩詞作品的能力,在分析、鑒賞中感悟前人豐饒的情思,博大的智慧,從而提高學(xué)生的人文素養(yǎng),提高文化品味。這首詞寫于元豐五年,是蘇軾被貶黃州游赤鼻磯所作。本詞感情激蕩,意境雄渾壯闊。全詞融寫景、詠史、抒情為一體。通過學(xué)習(xí),學(xué)生可以獲得一些鑒賞詩詞的基本要領(lǐng),領(lǐng)略壯闊意境,感受豪放詞風(fēng);同時(shí)學(xué)習(xí)蘇軾在逆境中依然樂觀曠達(dá)的人生觀。

  • 《拿來主義》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    《拿來主義》說課稿(二) 2021-2022學(xué)年統(tǒng)編版高中語文必修上冊(cè)

    四、說教學(xué)過程(一)結(jié)合現(xiàn)實(shí)、自然導(dǎo)入隨著我國開放的深入發(fā)展,國外的科學(xué)、文化、技術(shù)以及資產(chǎn)階級(jí)的腐朽思想,生活作風(fēng)等等也隨之大量涌來,我們應(yīng)采取怎樣的態(tài)度和方法才是正確的呢?魯迅先生在30年代就繼承文化遺產(chǎn)問題曾寫過一篇雜文,我們可以從中獲得那些啟示呢?(二)整體感知、疏瀹文意1.請(qǐng)同學(xué)介紹“我所知道的魯迅”,教師補(bǔ)充寫作背景。教師有針對(duì)性的進(jìn)行預(yù)習(xí)檢查,能促使學(xué)生養(yǎng)成課前預(yù)習(xí)的習(xí)慣。2.理清文章的思路,分析文章的整體結(jié)構(gòu)教師范讀課文,針對(duì)較難的字音進(jìn)行正讀。學(xué)生快速瀏覽課文,把握全文框架,小組討論后分出層次。(讓學(xué)生通過自主合作探究來概括文意可以讓同學(xué)們參與到教學(xué)活動(dòng)中,鍛煉學(xué)生實(shí)際動(dòng)手能力)

上一頁123...383940414243444546474849下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費(fèi)ppt模板下載,ppt特效動(dòng)畫,PPT模板免費(fèi)下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。