提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中地理必修2人口的數(shù)量變化精品教案

  • 人教版新課標高中物理必修1勻變速直線運動的速度與時間的關系說課稿2篇

    人教版新課標高中物理必修1勻變速直線運動的速度與時間的關系說課稿2篇

    設計意圖:幾道例題及練習題,其中例1小車由靜止啟動開始行駛,以加速度 做勻加速運動,求2s后的速度大???進而變式到:小車遇到紅燈剎車……,充分體現(xiàn)了“從生活到物理,從物理到社會”的物理教學理念;例題及練習題由淺入深、由易到難、各有側重,體現(xiàn)新課標提出的讓不同的學生在物理上得到不同發(fā)展的教學理念。這一環(huán)節(jié)總的設計意圖是反饋教學,內(nèi)化知識。(6) 小結歸納,拓展深化我的理解是,小結歸納不應該僅僅是知識的簡單羅列,而應該是優(yōu)化認知結構,完善知識體系的一種有效手段,為充分發(fā)揮學生的主題作用,從學習的知識、方法、體驗是那個方面進行歸納,我設計了這么三個問題:① 通過本節(jié)課的學習,你學會了哪些知識;② 通過本節(jié)課的學習,你最大的體驗是什么;③ 通過本節(jié)課的學習,你掌握了哪些學習物理的方法?

  • 人教版新課標高中物理必修1勻變速直線運動的位移與時間的關系說課稿2篇

    人教版新課標高中物理必修1勻變速直線運動的位移與時間的關系說課稿2篇

    培養(yǎng)學生合作交流意識和探究問題的能力,這一部分知識層層遞進,符合學生由特殊到一般、由簡單到復雜的認知規(guī)律。4、互動探究(1)極限思想的滲透讓學生閱讀“思考與討論”小版塊.培養(yǎng)學生的自學和閱讀能力提出下列問題,進行分組討論:a、用課本上的方法估算位移,其結果比實際位移大還是小?為什么?b、為了提高估算的精確度,時間間隔小些好還是大些好?為什么?針對學生回答的多種可能性加以評價和進一步指導。讓學生從討論的結果中歸納得出:△t越小,對位移的估算就越精確。滲透極限的思想。通過小組內(nèi)分工合作,討論交流,培養(yǎng)學生交流合作的精神,以及搜集信息、處理信息的能力;通過小組間對比總結,使學生學會在對比中發(fā)現(xiàn)問題,在解決問題過程中提高個人能力;

  • 人教版高中語文必修3《愛的奉獻 學習議論中的記敘》說課稿

    人教版高中語文必修3《愛的奉獻 學習議論中的記敘》說課稿

    教學過程:(一)導入:課前放《愛的奉獻》歌曲,同時不斷播放一些有關“愛”的主題的圖片,渲染一種情感氛圍。師說:同學們,誰能說說這組圖片的主題應該是什么?生(七嘴八舌):母愛,不對是親情……是友情、還有人與人互相幫助……那組軍人圖片是說保衛(wèi)國家,應該是愛國……那徐本禹和感動中國呢?…………生答:是關于愛的方面師說:不錯,是關于愛的方面。那么同學們,今天就以“愛的奉獻”為話題,來寫一篇議論文如何?生答:老師,還是寫記敘文吧。生答:就是,要不議論文寫出來也象記敘文。師問:為什么?生答:老師,這個話題太有話說了,一舉例子就收不住了,怎么看怎么象記敘文。生答:就是,再用一點形容詞,就更象了。眾人樂。師說:那么同學們誰能告訴我,為什么會出現(xiàn)這種問題?一生小聲說:還不是我們笨,不會寫。師說:不是笨,也不是不會寫,你們想為什么記敘文就會寫,一到議論文就不會了,那是因為同學們沒有明白議論文中的記敘與記敘文中的記敘有什么不同,所以一寫起議論文中的記敘,還是按照記敘文的寫法寫作,這自然就不行了。那好,今天我們就從如何寫議論文中的記敘講起。

  • 新版精品學生表彰大會發(fā)言

    新版精品學生表彰大會發(fā)言

    在這里,我也要和同學們說一說,我們來到學校的主要任務是讀書、學習。我們?yōu)槭裁匆x書、學習呢?以前我也不很清楚,現(xiàn)在,我知道了:讀書是為了打好文化基礎,提高自己的學習能力,掌握一定的本領,將來好為國家做出貢獻,從而實現(xiàn)自己的人生價值。那么,怎樣才能提高自己的學習成績呢?我認為,首先要有勤奮學習的態(tài)度。只要你勤奮努力了,成績就一定會慢慢提高,成績提高了,你就會找到自信心,有了自信心,成績就會提高的更快,到那時,你就會感到學習也是一件很快樂的事情。第二,要有正確的學習方法。我從一本書上看到一位清華大學的學生介紹的“三先三后”的學習方法,即先預習,后聽課;先復習,后做作業(yè);先獨立思考,后請教別人。這種方法,我感到對我很有用。我就是這樣學習的。我還聽老師說過,一流高手做作業(yè)是看得懂,做得對,說得清。我現(xiàn)在正朝著這個方向努力著。第三、注意培養(yǎng)自己良好的學習習慣。主要有提前預習的習慣、專心聽講的習慣、及時改錯的習慣、查找資料的習慣、勤于動筆的習慣、認真書寫的習慣。

  • 人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    人教A版高中數(shù)學必修一簡單的三角恒等變換教學設計(2)

    它位于三角函數(shù)與數(shù)學變換的結合點上,能較好反應三角函數(shù)及變換之間的內(nèi)在聯(lián)系和相互轉換,本節(jié)課內(nèi)容的地位體現(xiàn)在它的基礎性上。作用體現(xiàn)在它的工具性上。前面學生已經(jīng)掌握了兩角和與差的正弦、余弦、正切公式以及二倍角公式,并能通過這些公式進行求值、化簡、證明,雖然學生已經(jīng)具備了一定的推理、運算能力,但在數(shù)學的應用意識與應用能力方面尚需進一步培養(yǎng).課程目標1.能用二倍角公式推導出半角公式,體會三角恒等變換的基本思想方法,以及進行簡單的應用. 2.了解三角恒等變換的特點、變換技巧,掌握三角恒等變換的基本思想方法. 3.能利用三角恒等變換的技巧進行三角函數(shù)式的化簡、求值以及證明,進而進行簡單的應用. 數(shù)學學科素養(yǎng)1.邏輯推理: 三角恒等式的證明; 2.數(shù)據(jù)分析:三角函數(shù)式的化簡; 3.數(shù)學運算:三角函數(shù)式的求值.

  • 高中歷史人教版必修一《第2課秦朝中央集權制度的形成》說課稿

    高中歷史人教版必修一《第2課秦朝中央集權制度的形成》說課稿

    【課件展示】《秦朝中央集權制度的建立》《教材簡析》《教學目標》《教法簡介》《教學過程設計及特色簡述》【師】本節(jié)內(nèi)容以秦代政治體制和官僚系統(tǒng)的建立為核心內(nèi)容,主要包括秦朝中央集權制的建立的背景、建立過程及影響。本節(jié)內(nèi)容在整個單元中起到承前啟后的作用,在整個模塊中也有相當重要的地位。讓學生了解中國古代中央集權政治體制的初建對于理解我國古代政治制度的發(fā)展乃至我們今天的政治體制是十分必要的。 本堂課我采用多媒體和講授法及歷史辯論法相結合,通過巧妙設計問題情境,調動學生的學習積極性,使學生主動學習,探究思考。教師引導和組織學生采取小組討論、情景體驗等方式,達到教學目標。 本節(jié)內(nèi)容分三個部分,下面首先看秦朝中央集權制度建立的前提即秦的統(tǒng)一

  • 人教版高中歷史必修3西方人文主義思想的起源說課稿

    人教版高中歷史必修3西方人文主義思想的起源說課稿

    蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時候到了,我將死,你們活下來,是誰的選擇好,只有天知道?!闭f畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對一個叫克力同的人說了這樣一番話??肆ν腋嬖V你,這幾天一直有一個神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正?!聦嵣夏憔鸵x開這里了。當你去死的時候,你是個犧牲品,但不是我們所犯錯誤的犧牲品,而是你同胞所犯錯誤的犧牲品。但你若用這種可恥的方法逃避,以錯還錯,以惡報惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應該傷害的,包括你自己、你的朋友、你的國家,還有我們。到那時,你活著面對我們的憤怒,你死后我們的兄弟、冥府里的法律也不會熱情歡迎你;因為它們知道你試圖盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧?!?/p>

  • 人教版高中政治必修4人的認識從何而來說課稿(一)

    人教版高中政治必修4人的認識從何而來說課稿(一)

    展示學習過的物理學內(nèi)容:伽利略的“比薩斜塔”實驗,證明了:兩個鐵球同時落地。得出結論:實踐是檢驗認識正確與否的唯一標準。(因為這點理解起來有點難,所一教師要適當?shù)闹v解)A、一種認識是否是真理不能由這一認識本身回答B(yǎng)、客觀事物自身也不能回答認識是否正確地反映了它C、實踐是聯(lián)系主觀與客觀的橋梁。人們把認識和實踐的結果對照,相符合,認識就正確。○4實踐是認識的目的和歸宿:走進社會:(課本P46歸國博士案例)從這個故事中我們可以得到什么啟示?得出結論:實踐是認識的歸宿和目的。啟發(fā)學生學以致用,eg:紀中的學生研究地溝油簡易檢測方法(靈活利用身邊的教學資源)。【板書設計】實踐是認識的基礎(板書)投影:逐步展示本課知識結構圖。學生通過回憶,讓學生有直觀的認識,學習內(nèi)容一目了然。1.實踐是認識的來源。2.實踐是認識發(fā)展的動力。3.實踐是檢驗認識的真理性的唯一標準。

  • 人教版高中政治必修4人的認識從何而來說課稿(二)

    人教版高中政治必修4人的認識從何而來說課稿(二)

    今天我說課的題目是《生活與哲學4(必修)》的第二單元第六課第一框題——《人的認識從何而來》下面我將從教材,教法,學法,教學過程,教學反思五個方面來說一說我對本課的認識和教學設想。一、說教材我將從該框題在教材中的地位和作用,教學目標,教學重難點三方面來闡述我對教材的認識。(一)首先是教材的地位和作用;本框題重點論述馬克思主義哲學認識論中實踐與認識的關系。實踐的觀點是馬克思主義首要和基本的觀點,理解實踐與認識的關系是把握哲學智慧不可或缺的途徑。學好本框題不僅有利于學生從宏觀上把握教材各課的聯(lián)系,而且有利于幫助學生理解馬克思主義哲學的本質特征。(二)教學目標是確定教學重點,進行教學設計的基礎。依據(jù)新課程標準,我確定本課的教學目標有以下三方面:知識與技能:1、識記實踐的含義、實踐的構成要素、實踐的特點。

  • 人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展說課稿

    人教版高中歷史必修3現(xiàn)代中國教育的發(fā)展說課稿

    一、教材分析下面我來談一談對教材的認識:主要從教材的地位和作用、以及在此基礎上確立的教學目標、教學重難點這三個方面來談。首先,來談教材的地位和作用:本課教材內(nèi)容主要從三個方面向學生介紹了現(xiàn)代中國教育的發(fā)展狀況和趨勢:人民教育的奠基、動亂中的教育和教育的復興,全面講述了新中國教育的三個階段。本課是文化史中中國史部分的最后一課, 也是必修三冊書中唯一涉及教育的一課。而教育是思想文化史中的重要組成部分,江澤民同志在談到教育的時候曾經(jīng)說過,“百年大計,教育為本。教育為本,在于育人”。教育是關系國計民生的大事。學生通過學習新中國教育發(fā)展的史實,理解“科教興國”、“國運興衰,系于教育”的深刻含義。最終由此激發(fā)學生樹立“知識改變命運、讀書成就人生”的信念,樹立勤奮學習、成人成才、報效祖國、服務社會的崇高理想。故本課的教學有極大的現(xiàn)實意義。談完了教材的地位和作用,我再分析一下教學目標:

  • 高中歷史人教版必修二《第2課古代手工業(yè)的進步》說課稿

    高中歷史人教版必修二《第2課古代手工業(yè)的進步》說課稿

    二、教學目標:1、知識與能力(1)了解我國古代冶金、制瓷、絲織業(yè)發(fā)展的基本情況;(2)了解中國古代手工業(yè)享譽世界的史實,培養(yǎng)學生的民族自信心。2、過程與方法(1)通過大量的歷史圖片,指導學生欣賞一些精湛的手工業(yè)藝術品,提高學生探究古代手工業(yè)的興趣;(2)運用歷史材料引導學生歸納古代手工業(yè)產(chǎn)品的基本特征。3、情感態(tài)度與價值觀:通過本課教學,使學生充分地感受到我國古代人民的聰明與才智,認識到古代許多手工業(yè)品具有較高的藝術價值,以及在世界上的領先地位和對世界文明的影響,增強民族自豪感。

  • 點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    點到直線的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    4.已知△ABC三個頂點坐標A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩點間的距離公式教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學在一條筆直的公路同側有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關,也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩條平行線間的距離教學設計人教A版高中數(shù)學選擇性必修第一冊

    一、情境導學前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    兩直線的交點坐標教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的標準方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質,如圓的性質等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

上一頁123...4041424344454647484950下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。