
解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實質(zhì)是觀察自變量增大時,因變量是隨之增大還是減?。?、板書設計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

解:(1)設第一次購買的單價為x元,則第二次的單價為1.1x元,根據(jù)題意得14521.1x-1200x=20,解得x=6.經(jīng)檢驗,x=6是原方程的解.(2)第一次購買水果1200÷6=200(千克).第二次購買水果200+20=220(千克).第一次賺錢為200×(8-6)=400(元),第二次賺錢為100×(9-6.6)+120×(9×0.5-6.6)=-12(元).所以兩次共賺錢400-12=388(元).答:第一次水果的進價為每千克6元;該老板兩次賣水果總體上是賺錢了,共賺了388元.方法總結(jié):本題具有一定的綜合性,應該把問題分解成購買水果和賣水果兩部分分別考慮,掌握這次活動的流程.三、板書設計列分式方程解應用題的一般步驟是:第一步,審清題意;第二步,根據(jù)題意設未知數(shù);第三步,根據(jù)題目中的數(shù)量關系列出式子,并找準等量關系,列出方程;第四步,解方程,并驗根,還要看方程的解是否符合題意;最后作答.

接著,引導學生回答命題1的題設、結(jié)論,教師把命題1的圖示畫在黑板上,得到以下的數(shù)學表達式。已知:如圖,△ABC∽△A/B/C/、△ABC與△A/B/C/的相似比是K,AD、A/D/是對應高。求證:AD/A/D/=K首先讓學生回憶,證明線段成比例學過哪些方法,接著引導學生分析證明思路:要證AD/A/D/=K,根據(jù)圖形學生能找到含對應高和對應邊的兩對三角形,即△ADB和△A/D/B/、△ADC和△A/D/C/。若要證AD/A/D/=K,則應有△ADB∽△A/D/B/,由條件可知∠ADB=∠A/D/B/=90°,∠B=∠B/,于是可得△ADB∽△A/D/B/,得到AD/A/D/=K。隨后,學生口述教師板書規(guī)范的證明過程。接著問學生還有哪些證明方法?同理可證得其他兩邊上的對應高的比等于相似比,所以命題1具有一般性。而對于命題2、命題3的數(shù)學表達式和證明方法與命題1類似,所以為了提高教學效率,用投影依次將命題2、命題3的已知、求證和題圖顯示出來,并指導學生課堂練習證明這兩個命題。

準備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復聽到消息的可能性是很大的,當然重復感染的可能性也是很大的。

在解決問題的過程中,學生使用到了生活中常見的工具——標桿、鏡子等,這些小工具搖身一變就成了學生學習用的學具。使學生感覺到利用身邊的工具完全可以達到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設。在課堂教學中創(chuàng)設良好的學習情境,充分激發(fā)學生求學熱情。當學生的學習投入到教師創(chuàng)設的學習情境中,就會形成主動尋求知識的內(nèi)在動力。學生在這種學習情境中主動學習到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學習興趣。2、注意培養(yǎng)學生的問題意識。問題解決后,教師應讓學生從解決的問題出發(fā),通過對題目的拓展,引導學生用新的思維去再次解決新問題,這樣不僅讓學生掌握了更多的知識,還能讓學生的思維得到升華。3、培養(yǎng)學生自主探索、合作交流的學習方法和習慣。

(四)提高應用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設計意圖:訓練學生靈活運用知識的能力(五)小結(jié)反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似. 2、在找對應角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構(gòu)造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調(diào)兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應角的方法:①已知角相等;②已知角度計算得出相等的對應角;③公共角;④對頂角;⑤同角的余(補)角相等.

故直線l2對應的函數(shù)關系式為y=52x.故(-2,-5)可看成是二元一次方程組5x-2y=0,2x-y=1的解.(3)在平面直角坐標系內(nèi)畫出直線l1,l2的圖象如圖,可知點A(0,-1),故S△APO=12×1×2=1.方法總結(jié):此題在待定系數(shù)法的應用上有所創(chuàng)新,并且把一次函數(shù)的圖象和三角形面積巧妙地結(jié)合起來,既考查了基本知識,又不局限于基本知識.三、板書設計利用二元一次方程組確定一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設出一次函數(shù)的表達式:y=kx+b(k≠0);2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b的值,進而得到一次函數(shù)的表達式.通過教學,進一步理解方程與函數(shù)的聯(lián)系,體會知識之間的普遍聯(lián)系和知識之間的相互轉(zhuǎn)化.通過對本節(jié)課的探究,培養(yǎng)學生的觀察能力、識圖能力以及語言表達能力.

方法總結(jié):解題關鍵是要讀懂題目的意思,根據(jù)題目給出的條件,找出合適的等量關系,列出方程再求解.探究點三:工程問題一個道路工程,甲隊單獨施工9天完成,乙隊單獨做24天完成.現(xiàn)在甲乙兩隊共同施工3天,因甲另有任務,剩下的工程由乙隊完成,問乙隊還需幾天才能完成?解析:首先設乙隊還需x天才能完成,由題意可得等量關系:甲隊干三天的工作量+乙隊干(x+3)天的工作量=1,根據(jù)等量關系列出方程,求解即可.解:設乙隊還需x天才能完成,由題意得:19×3+124(3+x)=1,解得:x=13.答:乙隊還需13天才能完成.方法總結(jié):找到等量關系是解決問題的關鍵.本題主要考查的等量關系為:工作效率×工作時間=工作總量,當題中沒有一些必須的量時,為了簡便,應設其為1.三、板書設計“希望工程”義演題目特點:未知數(shù)一般有兩個,等量關系也有兩個解題思路:利用其中一個等量關系設未知數(shù),利用另一個等量關系列方程

解:設截取圓鋼的長度為xmm.根據(jù)題意,得π(902)2x=131×131×81,解方程,得x=686.44π.答:截取圓鋼的長度為686.44πmm.方法總結(jié):圓鋼由圓柱形變成了長方體,形狀發(fā)生了變化,但是體積保持不變.“變形之前圓鋼的體積=變形之后長方體的體積”就是我們所要尋找的等量關系.探究點三:面積變化問題將一個長、寬、高分別為15cm、12cm和8cm的長方體鋼坯鍛造成一個底面是邊長為12cm的正方形的長方體鋼坯.試問:是鍛造前的長方體鋼坯的表面積大,還是鍛造后的長方體鋼坯的表面積大?請你計算比較.解析:由鍛造前后兩長方體鋼坯體積相等,可求出鍛造后長方體鋼坯的高.再計算鍛造前后兩長方體鋼坯的表面積,最后比較大小即可.解析:設鍛造后長方體的高為xcm,依題意,得15×12×8=12×12x.解得x=10.鍛造前長方體鋼坯的表面積為2×(15×12+15×8+12×8)=2×(180+120+96)=792(cm2),鍛造后長方體鋼坯的表面積為2×(12×12+12×10+12×10)=2×(144+120+120)=768(cm2).

因為x3表示手機部數(shù),只能為正整數(shù),所以這種情況不合題意,應舍去.綜上所述,商場共有兩種進貨方案.方案1:購甲型號手機30部,乙型號手機10部;方案2:購甲型號手機20部,丙型號手機20部.(2)方案1獲利:120×30+80×10=4400(元);方案2獲利:120×20+120×20=4800(元).所以,第二種進貨方案獲利最多.方法總結(jié):仔細讀題,找出相等關系.當用含未知數(shù)的式子表示相等關系的兩邊時,要注意不同型號的手機數(shù)量和單價要對應.三、板書設計增收節(jié)支問題分析解決列二元一次方程,組解決實際問題)增長率問題利潤問題利用圖表分析等量關系方案選擇通過問題的解決使學生進一步認識數(shù)學與現(xiàn)實世界的密切聯(lián)系,樂于接觸生活環(huán)境中的數(shù)學信息,愿意參與數(shù)學話題的研討,從中懂得數(shù)學的價值,逐步形成運用數(shù)學的意識;并且通過對問題的解決,培養(yǎng)學生合理優(yōu)化的經(jīng)濟意識,增強他們的節(jié)約和有效合理利用資源的意識.

解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎

解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點

將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴交流設計意圖:通過引導學生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關系為后面學習扇形面積公式做鋪墊,體現(xiàn)知識的延續(xù)性。(六)、鞏固練習.如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結(jié)學完這節(jié)課你有哪些收獲?設計意圖:通過小節(jié)讓學生對所學知識進行梳理,使所學知識能合理地納入自身的知識結(jié)構(gòu)。(八) 布置作業(yè):中等學生:P125. 1優(yōu)等生: P125. 2,3我針對學生素質(zhì)的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有余力的學生有所提高,從而達到拔尖和“減負”的目的。

說明:此處進行的是一次嘗試應用乘方運算來解決開頭的問題,互相呼應,以體現(xiàn)整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復和模仿,通過本節(jié)課的學習,多數(shù)學生應該可以較輕松地完成??傊?,在整個教學設計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯(lián)系比較,讓學生主動自覺地去思考、探索、總結(jié)直至發(fā)現(xiàn)結(jié)果、發(fā)現(xiàn)"方法",進而優(yōu)化了整個教學。

五、兩點說明。(一)、板書設計這節(jié)課的板書我是這樣設計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數(shù)除法的法則,為了培養(yǎng)學生把文字語言轉(zhuǎn)化成符號語言的能力,板書中只出現(xiàn)兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學生的板演,以便于比較他們做題中出現(xiàn)的問題。板書下方是課堂小結(jié),重點寫出:有理數(shù)的除法可以轉(zhuǎn)化成有理數(shù)的乘法,以體現(xiàn)本節(jié)課中的重要的數(shù)學思想方法。有理數(shù)的除法板演練習:有理數(shù)除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結(jié):有理數(shù)的除法 有理數(shù)的乘法轉(zhuǎn)化(二)、時間分配:教學過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。

5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應該吸取經(jīng)驗教訓,再以后的教學中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!

在答案的匯總過程中,要肯定學生的探索,愛護學生的學習興趣和探索欲.讓學生作課堂的主人,陳述自己的結(jié)果.對學生的不完整或不準確回答,教師適當延遲評價;要鼓勵學生創(chuàng)造性思維,教師要及時抓住學生智慧的火花的閃現(xiàn),這一瞬間的心理激勵,是培養(yǎng)學生創(chuàng)造力、充分挖掘潛能的有效途徑.預先設想學生思路,可能從以下方面分類歸納,探索規(guī)律:① 從加數(shù)的不同符號情況(可遇見情況:正數(shù)+正數(shù);負數(shù)+負數(shù);正數(shù)+負數(shù);數(shù)+0)② 從加數(shù)的不同數(shù)值情況(加數(shù)為整數(shù);加數(shù)為小數(shù))③ 從有理數(shù)加法法則的分類(同號兩數(shù)相加;異號兩數(shù)相加;同0相加)④ 從向量的迭加性方面(加數(shù)的絕對值相加;加數(shù)的絕對值相減)⑤ 從和的符號確定方面(同號兩數(shù)相加符號的確定;異號兩數(shù)相加符號的確定)教學中要避免課堂熱熱鬧鬧,卻陷入數(shù)學教學的淺薄與貧乏.

“數(shù)的運算”是“數(shù)與代數(shù)”學習領域的重要內(nèi)容,減法是其中的一種基本運算.本課的學習遠接小學階段關于整數(shù)、分數(shù)(包括小數(shù))的減法運算,近承第四節(jié)有理數(shù)的加法運算.通過對有理數(shù)的減法運算的學習,學生將對減法運算有進一步的認識和理解,為后繼諸如實數(shù)、復數(shù)的減法運算的學習奠定了堅實的基礎.鑒于以上對教學內(nèi)容在教材體系中的位置及地位的認識和理解,確定本節(jié)課的教學目標如下:1、知識目標:經(jīng)歷探索有理數(shù)的減法法則的過程,理解有理數(shù)的減法法則,并能熟練運用法則進行有理數(shù)的減法運算.2、能力目標:經(jīng)歷由特例歸納出一般規(guī)律的過程,培養(yǎng)學生的抽象概括能力及表達能力;通過減法到加法的轉(zhuǎn)化,讓學生初步體會轉(zhuǎn)化、化歸的數(shù)學思想.3、情感目標:

四、教學過程分析為有序、有效地進行教學,本節(jié)課我主要安排了以下教學環(huán)節(jié):(一)復習導入主要復習一下三種統(tǒng)計圖,為接下來介紹三種統(tǒng)計圖的特點及根據(jù)實際問題選取適當?shù)慕y(tǒng)計圖做好知識準備。(二)問題探究選取課本上“小華對1992~2002年同學家中有無電視機及近一年來同學在家看電視的情況”的3個調(diào)查項目,進而設計3個探究問題從而加深學生對每一種統(tǒng)計圖的進一步認識,至此用自己的語言總結(jié)出每一種統(tǒng)計圖的特點。(三)實踐練兵這一環(huán)節(jié)通過2個實際問題的設計,通過學生對問題的分析、討論,使學生認識到適當選取統(tǒng)計圖有助于幫助人們?nèi)ジ焖?、更準確地獲取信息。(四)課堂小結(jié)總結(jié)這一節(jié)課所學的重點知識,這部分主要是讓學生自己去總結(jié),看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進一步鞏固本節(jié)課所學的知識,達到教學效果。以上就是我對這節(jié)課的見解,不足之處還望批評和指正。

證明:過點A作AF∥DE,交BC于點F.∵AE=AD,∴∠E=∠ADE.∵AF∥DE,∴∠E=∠BAF,∠FAC=∠ADE.∴∠BAF=∠FAC.又∵AB=AC,∴AF⊥BC.∵AF∥DE,∴DE⊥BC.方法總結(jié):利用等腰三角形“三線合一”得出結(jié)論時,先必須已知一個條件,這個條件可以是等腰三角形底邊上的高,可以是底邊上的中線,也可以是頂角的平分線.解題時,一般要用到其中的兩條線互相重合.三、板書設計1.全等三角形的判定和性質(zhì)2.等腰三角形的性質(zhì):等邊對等角3.三線合一:在等腰三角形的底邊上的高、中線、頂角的平分線中,只要知道其中一個條件,就能得出另外的兩個結(jié)論.本節(jié)課由于采用了動手操作以及討論交流等教學方法,有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質(zhì)理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。