
環(huán)節(jié)四 課堂總結(jié) 鞏固知識(shí)本節(jié)課我采用線(xiàn)索性的板書(shū),整個(gè)知識(shí)結(jié)構(gòu)一目了然,為了充分發(fā)揮學(xué)生在課堂的主體地位,我將課堂小結(jié)交由學(xué)生完成,請(qǐng)學(xué)生根據(jù)課堂學(xué)習(xí)的內(nèi)容,結(jié)合我的板書(shū)設(shè)計(jì)來(lái)進(jìn)行小結(jié),以此來(lái)幫助教師在第一時(shí)間掌握學(xué)生學(xué)習(xí)信息的反饋,同時(shí)培養(yǎng)學(xué)生歸納分析能力、概括能力。環(huán)節(jié)五 情景回歸,情感升華我的實(shí)習(xí)指導(dǎo)老師告訴過(guò)我們,政治這一門(mén)學(xué)科要從生活中來(lái)到生活去,所以在課堂的最后布置課外作業(yè),以此培養(yǎng)學(xué)生對(duì)理論的實(shí)際運(yùn)用能力,同時(shí)檢驗(yàn)他們對(duì)知識(shí)的真正掌握情況,以此達(dá)到情感的升華,本節(jié)課,我根據(jù)建構(gòu)主義理論,強(qiáng)調(diào)學(xué)生是學(xué)習(xí)的中心,學(xué)生是知識(shí)意義的主動(dòng)建構(gòu)者,是信息加工的主體,要強(qiáng)調(diào)學(xué)生在課堂中的參與性、以及探究性,不僅讓他們懂得知識(shí),更讓他們相信知識(shí),并且將知識(shí)融入到實(shí)踐當(dāng)中去,最終達(dá)到知、情、意、行的統(tǒng)一。

問(wèn)題設(shè)計(jì):通過(guò)這一課的學(xué)習(xí),同學(xué)們能解釋君主專(zhuān)制中央集權(quán)制度的含義嗎?【總結(jié)】封建專(zhuān)制主義中央集權(quán)制度包括專(zhuān)制主義和中央集權(quán)制兩個(gè)概念。專(zhuān)制主義是就中央的決策方式而言的,主要體現(xiàn)在皇位終身制和世襲制上,特征是皇帝個(gè)人獨(dú)裁專(zhuān)斷,集國(guó)家最高權(quán)力于一身,從決策到行使軍政財(cái)權(quán)都具有獨(dú)斷性和隨意性;中央集權(quán)則是相對(duì)于地方分權(quán)而言,其特點(diǎn)是地方政府在政治、經(jīng)濟(jì)、軍事等方面沒(méi)有獨(dú)立性,必須充分執(zhí)行中央的政令,一切服從于中央。三、秦朝中央集權(quán)制的影響展示圖片:《秦朝疆域圖》正是由于有一個(gè)統(tǒng)一集中的中央政權(quán),秦王朝才能積極開(kāi)拓疆域,北拒匈奴,南吞百越,有利于我國(guó)多民族國(guó)家統(tǒng)一發(fā)展。為了鞏固統(tǒng)一的國(guó)家,秦朝還通過(guò)實(shí)行哪些措施鞏固統(tǒng)一局面?展示圖片:“秦半兩錢(qián)”“秦權(quán)”“小篆”“秦簡(jiǎn)”等圖片。正是有一個(gè)強(qiáng)有力中央政府,才統(tǒng)一了貨幣、文字、度量衡,才開(kāi)驛道、修靈渠,從而促進(jìn)了中國(guó)經(jīng)濟(jì)文化的發(fā)展進(jìn)步。展示“孟姜女哭長(zhǎng)城”的故事材料從故事及你所掌握的材料中,你認(rèn)為秦朝能否長(zhǎng)治久安?為什么?

1、課本第14頁(yè)的”做一做”。通過(guò)練習(xí),一方面是讓學(xué)生用剛學(xué)到的知識(shí)進(jìn)行改寫(xiě),進(jìn)一步鞏固了新知;一方面回憶過(guò)去提供的有關(guān)地理知識(shí)素材,使學(xué)生了解我國(guó)的地理知識(shí),擴(kuò)大視野。2、課本練習(xí)二的第3題。第3題的素材介紹了我國(guó)主要的農(nóng)產(chǎn)品,可以擴(kuò)大學(xué)生的知識(shí)面。在改寫(xiě)之后還要求學(xué)生進(jìn)行大數(shù)的比較,對(duì)兩部分知識(shí)進(jìn)行混合練習(xí)。3、課文練習(xí)二的第4~5題。第4題是關(guān)于近似數(shù)的聯(lián)系,通過(guò)準(zhǔn)確數(shù)與近似數(shù)的對(duì)比,區(qū)分聯(lián)系,題會(huì)在什么情況下使用準(zhǔn)確數(shù),在什么情況下使用近似數(shù),使學(xué)生進(jìn)一步理解近似數(shù)的含義和在實(shí)際生活中的作用。第5題是關(guān)于我國(guó)第五次人口普查中6個(gè)省份的人口數(shù)。讓學(xué)生求出這些數(shù)的近似訴,并提示學(xué)生在可能的情況下通過(guò)互連網(wǎng)等媒體了解其他地區(qū)的人口數(shù)。同時(shí)還介紹了我國(guó)每十年進(jìn)行一次人口普查的知識(shí)。

教學(xué)建議:億以?xún)?nèi)數(shù)的讀法是在萬(wàn)以?xún)?nèi)數(shù)的認(rèn)識(shí)基礎(chǔ)上進(jìn)行教學(xué)的,主要是讓學(xué)生用已有的知識(shí)去類(lèi)推,所以在教學(xué)本課時(shí)我們有必要對(duì)萬(wàn)以?xún)?nèi)數(shù)的認(rèn)識(shí)進(jìn)行有針對(duì)性的復(fù)習(xí)。如可采用口答形式復(fù)習(xí)數(shù)位順序及各數(shù)位之間的十進(jìn)關(guān)系。對(duì)于萬(wàn)以?xún)?nèi)數(shù)的讀法,可以出示一組數(shù)據(jù)如:2005年路橋區(qū)前兩個(gè)月共實(shí)現(xiàn)農(nóng)林、漁業(yè)總產(chǎn)值17013萬(wàn)元,其中農(nóng)業(yè)產(chǎn)品6383萬(wàn)元,林業(yè)產(chǎn)值94萬(wàn)元,漁業(yè)產(chǎn)值7560萬(wàn)元。在對(duì)萬(wàn)以?xún)?nèi)數(shù)復(fù)習(xí)的基礎(chǔ)上我們?cè)俪鍪镜?頁(yè)主題圖,讓學(xué)生讀一讀畫(huà)面上呈現(xiàn)的6個(gè)大數(shù),也可以讓學(xué)生說(shuō)說(shuō)身邊聽(tīng)到,看到的大數(shù)。在這環(huán)節(jié)中我們就讓學(xué)生憑著自己的理解運(yùn)用舊知識(shí)去讀數(shù)。這里學(xué)生肯定會(huì)造成認(rèn)知上的沖突,從而引入新課教學(xué)。新課時(shí)可以按以下環(huán)節(jié)進(jìn)行:1、計(jì)數(shù)器操作,認(rèn)識(shí)計(jì)數(shù)單位用計(jì)數(shù)器數(shù)數(shù),撥上一萬(wàn),然后一萬(wàn)一萬(wàn)地?cái)?shù),一直數(shù)到九萬(wàn)后,再加一萬(wàn)是多少?認(rèn)識(shí)十個(gè)一萬(wàn)是十萬(wàn),用同樣的方法,完成一百萬(wàn),一千萬(wàn),一億的認(rèn)識(shí)。

6. 本題是一道實(shí)際應(yīng)用的題,可以結(jié)合生活實(shí)際舉例,在舉例中進(jìn)一步認(rèn)識(shí)分?jǐn)?shù)。7. (讀作八分之一)表示把人的身高看作單位“1”,頭部的高度占整個(gè)身高的 ; (讀作五分之三)表示把整個(gè)長(zhǎng)江的干流看作單位“1”,受污染的部分占整個(gè)長(zhǎng)江干流的 ; (讀作十分之三)表示把死海表層的水看作單位“1”,含鹽量占死海表層水的 。8. 讀作六分之一, 讀作七分之二, 讀作是十五分之四, 讀作十八分之十一, 讀作一百分之七。它們的分?jǐn)?shù)單位分別是: 、 、 、 、 。9. 本題有兩個(gè)知識(shí)點(diǎn):一是根據(jù)分?jǐn)?shù)的意義涂色,是把12個(gè)蘋(píng)果平均分成了2份,1份有6個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了3份,1份有4個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了4份,1份有3個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了6份,1份有2個(gè)蘋(píng)果; 是把12個(gè)蘋(píng)果平均分成了12份,1份有1個(gè)蘋(píng)果。二是在涂色中感受平均分成的份數(shù)越多,每一份越少,也可以說(shuō)隨著分母的增大,幾分之一所表示的蘋(píng)果個(gè)數(shù),從 的6個(gè)到 的1個(gè),相應(yīng)地在減少。

二、 教學(xué)目標(biāo)1.理解分?jǐn)?shù)加減法的算理,掌握分?jǐn)?shù)加減法的計(jì)算方法,并能正確地計(jì)算出結(jié)果。2.理解整數(shù)加法的運(yùn)算定律對(duì)分?jǐn)?shù)加法仍然適用,并會(huì)運(yùn)用這些運(yùn)算定律進(jìn)行一些分?jǐn)?shù)加法的簡(jiǎn)便運(yùn)算,進(jìn)一步提高簡(jiǎn)算能力。 3.體會(huì)分?jǐn)?shù)加減運(yùn)算在生活、生產(chǎn)中的廣泛應(yīng)用。三、學(xué)情分析五年級(jí)的學(xué)生已有一定的生活經(jīng)驗(yàn),對(duì)數(shù)學(xué)的神秘感有了更強(qiáng)的好奇心。因此,結(jié)合分?jǐn)?shù)加減的學(xué)習(xí)內(nèi)容適當(dāng)補(bǔ)充一些數(shù)學(xué)史料,可使學(xué)生的好奇轉(zhuǎn)化為探究欲,促其學(xué)習(xí)數(shù)學(xué)興趣的提高,并逐步形成良好的探究習(xí)慣。因此,教學(xué)時(shí),應(yīng)重視教材提供的兩個(gè)涉及數(shù)學(xué)文化的閱讀材料的學(xué)習(xí)。在此基礎(chǔ)上,再補(bǔ)充一些相關(guān)的學(xué)習(xí)材料。四、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):分?jǐn)?shù)加減法的計(jì)算方法難點(diǎn):引導(dǎo)學(xué)生體會(huì)理解不同算法的思路。

教學(xué)目標(biāo): 1.理解、掌握梯形面積的計(jì)算公式,并能運(yùn)用公式正確計(jì)算梯形的面積。2.發(fā)展學(xué)生空間觀(guān)念。培養(yǎng)抽象、概括和解決實(shí)際問(wèn)題的能力。3.掌握“轉(zhuǎn)化”的思想和方法,進(jìn)一步明白事物之間是相互聯(lián)系,可以轉(zhuǎn)化的。教學(xué)重點(diǎn):理解、掌握梯形面積的計(jì)算公式。教學(xué)難點(diǎn):理解梯形面積公式的推導(dǎo)過(guò)程。教學(xué)過(guò)程:1.導(dǎo)入新課(1)投影出示一個(gè)三角形,提問(wèn):這是一個(gè)三角形,怎樣求它的面積?三角形面積計(jì)算公式是怎樣推導(dǎo)得到的?學(xué)生回答后,指名學(xué)生操作演示轉(zhuǎn)化的方法。(2)展示臺(tái)出示梯形,讓學(xué)生說(shuō)出它的上底、下底和各是多少厘米。(3)教師導(dǎo)語(yǔ):我們已學(xué)會(huì)了用轉(zhuǎn)化的方法推導(dǎo)三角形面積的計(jì)算公式,那怎樣計(jì)算梯形的面積呢?這節(jié)課我們就來(lái)解決這個(gè)問(wèn)題。(板書(shū)課題,梯形面積的計(jì)算)

解析:當(dāng)a0時(shí),直線(xiàn)ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿(mǎn)足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線(xiàn)x-2y-2=0平行的直線(xiàn)方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線(xiàn)方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線(xiàn)方程為x-2y-1=0.故選A.4.已知兩條直線(xiàn)y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線(xiàn).(1)求實(shí)數(shù)m的范圍;(2)若該直線(xiàn)的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線(xiàn),則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開(kāi)可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見(jiàn),任何一個(gè)圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請(qǐng)大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線(xiàn)是不是圓?下面我們來(lái)探討這一方面的問(wèn)題.探究新知例如,對(duì)于方程x^2+y^2-2x-4y+6=0,對(duì)其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因?yàn)槿我庖稽c(diǎn)的坐標(biāo) (x,y) 都不滿(mǎn)足這個(gè)方程,所以這個(gè)方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過(guò)恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時(shí),方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時(shí),方程x2+y2+Dx+Ey+F=0,表示一個(gè)點(diǎn)(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

切線(xiàn)方程的求法1.求過(guò)圓上一點(diǎn)P(x0,y0)的圓的切線(xiàn)方程:先求切點(diǎn)與圓心連線(xiàn)的斜率k,則由垂直關(guān)系,切線(xiàn)斜率為-1/k,由點(diǎn)斜式方程可求得切線(xiàn)方程.若k=0或斜率不存在,則由圖形可直接得切線(xiàn)方程為y=b或x=a.2.求過(guò)圓外一點(diǎn)P(x0,y0)的圓的切線(xiàn)時(shí),常用幾何方法求解設(shè)切線(xiàn)方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線(xiàn)的距離等于半徑,可求得k,進(jìn)而切線(xiàn)方程即可求出.但要注意,此時(shí)的切線(xiàn)有兩條,若求出的k值只有一個(gè)時(shí),則另一條切線(xiàn)的斜率一定不存在,可通過(guò)數(shù)形結(jié)合求出.例3 求直線(xiàn)l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長(zhǎng).思路分析:解法一求出直線(xiàn)與圓的交點(diǎn)坐標(biāo),解法二利用弦長(zhǎng)公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長(zhǎng).解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點(diǎn)A(1,3),B(2,0),故弦AB的長(zhǎng)為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點(diǎn)A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長(zhǎng)為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(diǎn)(0,1)到直線(xiàn)l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長(zhǎng)為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長(zhǎng)|AB|=√10.

4.已知△ABC三個(gè)頂點(diǎn)坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線(xiàn)方程的兩點(diǎn)式得直線(xiàn)BC的方程為 = ,即x-2y+3=0,由兩點(diǎn)間距離公式得|BC|= ,點(diǎn)A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線(xiàn)l經(jīng)過(guò)點(diǎn)P(0,2),且A(1,1),B(-3,1)兩點(diǎn)到直線(xiàn)l的距離相等,求直線(xiàn)l的方程.解:(方法一)∵點(diǎn)A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線(xiàn)l的斜率存在,設(shè)為k.又直線(xiàn)l在y軸上的截距為2,則直線(xiàn)l的方程為y=kx+2,即kx-y+2=0.由點(diǎn)A(1,1)與B(-3,1)到直線(xiàn)l的距離相等,∴直線(xiàn)l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線(xiàn)l過(guò)線(xiàn)段AB的中點(diǎn)時(shí),A,B兩點(diǎn)到直線(xiàn)l的距離相等.∵AB的中點(diǎn)是(-1,1),又直線(xiàn)l過(guò)點(diǎn)P(0,2),∴直線(xiàn)l的方程是x-y+2=0.當(dāng)直線(xiàn)l∥AB時(shí),A,B兩點(diǎn)到直線(xiàn)l的距離相等.∵直線(xiàn)AB的斜率為0,∴直線(xiàn)l的斜率為0,∴直線(xiàn)l的方程為y=2.綜上所述,滿(mǎn)足條件的直線(xiàn)l的方程是x-y+2=0或y=2.

1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點(diǎn)為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點(diǎn)為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線(xiàn)方程是 . 解析:兩圓的方程相減得公共弦所在的直線(xiàn)方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無(wú)解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個(gè)圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線(xiàn)l:x+2y=0,求經(jīng)過(guò)C1和C2的交點(diǎn)且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

【答案】B [由直線(xiàn)方程知直線(xiàn)斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線(xiàn)l1過(guò)點(diǎn)P(2,1)且與直線(xiàn)l2:y=x+1垂直,則l1的點(diǎn)斜式方程為_(kāi)_______.【答案】y-1=-(x-2) [直線(xiàn)l2的斜率k2=1,故l1的斜率為-1,所以l1的點(diǎn)斜式方程為y-1=-(x-2).]4.已知兩條直線(xiàn)y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無(wú)論k取何值,直線(xiàn)y-2=k(x+1)所過(guò)的定點(diǎn)是 . 【答案】(-1,2)6.直線(xiàn)l經(jīng)過(guò)點(diǎn)P(3,4),它的傾斜角是直線(xiàn)y=3x+3的傾斜角的2倍,求直線(xiàn)l的點(diǎn)斜式方程.【答案】直線(xiàn)y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線(xiàn)l的傾斜角為120°.以直線(xiàn)l的斜率為k′=tan 120°=-3.所以直線(xiàn)l的點(diǎn)斜式方程為y-4=-3(x-3).

解析:①過(guò)原點(diǎn)時(shí),直線(xiàn)方程為y=-34x.②直線(xiàn)不過(guò)原點(diǎn)時(shí),可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線(xiàn)方程為x+y-1=0.所以這樣的直線(xiàn)有2條,選B.答案:B4.若點(diǎn)P(3,m)在過(guò)點(diǎn)A(2,-1),B(-3,4)的直線(xiàn)上,則m= . 解析:由兩點(diǎn)式方程得,過(guò)A,B兩點(diǎn)的直線(xiàn)方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點(diǎn)P(3,m)在直線(xiàn)AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線(xiàn)ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線(xiàn)在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線(xiàn)與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個(gè)頂點(diǎn)A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線(xiàn)的方程;(2)求AC邊上的垂直平分線(xiàn)的方程.解析(1)直線(xiàn)AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線(xiàn)BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線(xiàn)AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線(xiàn)段AC的中點(diǎn)為D(-4,2),直線(xiàn)AC的斜率為12,則AC邊上的垂直平分線(xiàn)的斜率為-2,所以AC邊的垂直平分線(xiàn)的方程為y-2=-2(x+4),整理得2x+y+6=0.

實(shí)驗(yàn)是學(xué)習(xí)生物的手段和基礎(chǔ),是培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題的能力及創(chuàng)造能力的載體。新課程倡導(dǎo):強(qiáng)調(diào)過(guò)程,強(qiáng)調(diào)學(xué)生探索新知識(shí)的經(jīng)歷和獲得新知的體驗(yàn),不能在讓教學(xué)脫離學(xué)生的內(nèi)心感受,必須讓學(xué)生追求過(guò)程的體驗(yàn)。并且每年高考都有對(duì)生物學(xué)實(shí)驗(yàn)的考查,而且比例越來(lái)越重,而學(xué)生的失分比例大,主要在于他們沒(méi)有完整的生物實(shí)驗(yàn)設(shè)計(jì)模式,考慮問(wèn)題欠缺,本節(jié)安排在第二課時(shí)完整講述高中生物學(xué)實(shí)驗(yàn)設(shè)計(jì),是以學(xué)生在第一課時(shí)和前面探究實(shí)驗(yàn)接觸的前提下,完整體驗(yàn)生物實(shí)驗(yàn)設(shè)計(jì)模式,為后面學(xué)習(xí)探究實(shí)驗(yàn)打下基礎(chǔ),也為培養(yǎng)學(xué)生分析問(wèn)題、解決問(wèn)題從一開(kāi)始就打好基礎(chǔ)。五、說(shuō)教學(xué)過(guò)程:第一課時(shí)聯(lián)系生活,導(dǎo)入新課,激發(fā)學(xué)生學(xué)習(xí)興趣→細(xì)胞代謝→問(wèn)題探究,酶在代謝中的作用,掌握科學(xué)實(shí)驗(yàn)方法→酶的本質(zhì),運(yùn)用方法,自主歸納獲取新知→小結(jié)練習(xí),突出重點(diǎn)易化難點(diǎn)

1、八年級(jí)地理上冊(cè)(湘教版)教材內(nèi)容是中國(guó)地理為主,分為中國(guó)的疆域、中國(guó)的自然環(huán)境、中國(guó)的自然資源和中國(guó)的區(qū)域差異四大部分。八年級(jí)地理上冊(cè)表現(xiàn)出對(duì)各種能力的培養(yǎng),教材更多篇幅的圖片和活動(dòng)的訓(xùn)練。我國(guó)地域遼闊,資源豐富,但存在巨大的地域差異,這就需要在教學(xué)上處理好整體與差異的關(guān)系?! ±纾何覈?guó)的疆域面積居世界第三,但東西和南北都跨度很大,帶來(lái)了冬季氣候上的南北差異也帶來(lái)了東西的時(shí)間差異。

課前小測(cè)1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項(xiàng)和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項(xiàng)之和最大.( )(3)在等差數(shù)列中,Sn是其前n項(xiàng)和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項(xiàng)數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項(xiàng)的和為165,所有偶數(shù)項(xiàng)的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項(xiàng).]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項(xiàng)公式是an=2n-48,則Sn取得最小值時(shí),n為_(kāi)_______.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負(fù)項(xiàng)的和最小,即n=23或24.]二、典例解析例8.某校新建一個(gè)報(bào)告廳,要求容納800個(gè)座位,報(bào)告廳共有20排座位,從第2排起后一排都比前一排多兩個(gè)座位. 問(wèn)第1排應(yīng)安排多少個(gè)座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項(xiàng)和為S_n。

二、典例解析例4. 用 10 000元購(gòu)買(mǎi)某個(gè)理財(cái)產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計(jì)息,12個(gè)月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計(jì)息,存4個(gè)季度,則當(dāng)每季度利率為多少時(shí),按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計(jì)算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開(kāi)始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢(qián)存 n 個(gè)月以后的本利和組成一個(gè)數(shù)列{a_n },則{a_n }是等比數(shù)列,首項(xiàng)a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個(gè)月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢(qián)存 n 個(gè)季度以后的本利和組成一個(gè)數(shù)列{b_n },則{b_n }也是一個(gè)等比數(shù)列,首項(xiàng) b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

二、典例解析例3.某公司購(gòu)置了一臺(tái)價(jià)值為220萬(wàn)元的設(shè)備,隨著設(shè)備在使用過(guò)程中老化,其價(jià)值會(huì)逐年減少.經(jīng)驗(yàn)表明,每經(jīng)過(guò)一年其價(jià)值會(huì)減少d(d為正常數(shù))萬(wàn)元.已知這臺(tái)設(shè)備的使用年限為10年,超過(guò)10年 ,它的價(jià)值將低于購(gòu)進(jìn)價(jià)值的5%,設(shè)備將報(bào)廢.請(qǐng)確定d的范圍.分析:該設(shè)備使用n年后的價(jià)值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價(jià)值不小于(220×5%=)11萬(wàn)元;10年后,該設(shè)備的價(jià)值需小于11萬(wàn)元.利用{an}的通項(xiàng)公式列不等式求解.解:設(shè)使用n年后,這臺(tái)設(shè)備的價(jià)值為an萬(wàn)元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個(gè)公差為-d的等差數(shù)列.因?yàn)閍1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

二、典例解析例10. 如圖,正方形ABCD 的邊長(zhǎng)為5cm ,取正方形ABCD 各邊的中點(diǎn)E,F,G,H, 作第2個(gè)正方形 EFGH,然后再取正方形EFGH各邊的中點(diǎn)I,J,K,L,作第3個(gè)正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開(kāi)始,連續(xù)10個(gè)正方形的面積之和;(2) 如果這個(gè)作圖過(guò)程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個(gè)等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個(gè)正方形的頂點(diǎn)分別是第k個(gè)正方形各邊的中點(diǎn),所以a_(k+1)=〖1/2 a〗_k,因此{(lán)a_n},是以25為首項(xiàng),1/2為公比的等比數(shù)列.設(shè){a_n}的前項(xiàng)和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個(gè)正方形的面積之和為25575/512cm^2.(2)當(dāng)無(wú)限增大時(shí),無(wú)限趨近于所有正方形的面積和
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。