提供各類精美PPT模板下載
當前位置:首頁 > Word模板 > 教育教學 > 課件教案> 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

青青草原国产在线大伊人,香蕉成年网站未满十八禁,午夜亚洲AⅤ无码高潮片在线

  • 收藏模板
    下載模板

您可能喜歡的文檔查看更多

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(1)教學設計

    高斯(Gauss,1777-1855),德國數(shù)學家,近代數(shù)學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(1)教學設計

    我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數(shù)學問題,從中感受數(shù)學模型的現(xiàn)實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (2) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (2) 教學設計

    二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據(jù)查,2016--2017年度世界年度小麥產量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

等差數(shù)列的前n項和公式(2)教學設計

本節(jié)課選自《2019人教A版高中數(shù)學選擇性必修二》第四章《數(shù)列》,本節(jié)課主要學習等差數(shù)列的前n項和公式(2)

數(shù)列是高中代數(shù)的主要內容,它與數(shù)學課程的其它內容(函數(shù)、三角、不等式等)有著密切的聯(lián)系,又是今后學習高等數(shù)學的基礎,所以在高考中占有重要地位。

課件教案

數(shù)列是培養(yǎng)學生數(shù)學能力的良好題材。等差數(shù)列前n項和公式的推導過程中,讓學生經(jīng)歷公式的推導過程,體會數(shù)形結合的數(shù)學思想,體驗從特殊到一般的研究方法,學會觀察、歸納、反思,進一步培養(yǎng)學生靈活運用公式的能力。發(fā)展學生邏輯推理、直觀想象、數(shù)學運算和數(shù)學建模的的核心素養(yǎng)。

課程目標

學科素養(yǎng)

A.等差數(shù)列掌握等差數(shù)列前n項和的性質及應用.

B.會求等差數(shù)列前n項和的最值.

1.數(shù)學抽象:等差數(shù)列前n項和公式

2.邏輯推理:等差數(shù)列前n項和公式與二次函數(shù)

3.數(shù)學運算:等差數(shù)列前n項的應用

4.數(shù)學建模:等差數(shù)列前n項的具體應用

重點:求等差數(shù)列前n項和的最值

難點:等差數(shù)列前n項和的性質及應用

多媒體

教學過程

教學設計意圖

核心素養(yǎng)目標

一、課前小測

1.思考辨析

(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列也是等差數(shù)列.( )

(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )

(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )

[答案] (1)√ (2)√ (3)√

2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )

A.9 B.10 C.11 D.12

B [∵,∴.∴n=10.故選B項.]

3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.

15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]

4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.

23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]

二、典例解析

例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?

分析:將第1排到第20排的座位數(shù)依次排成一列,構成數(shù)列{an} ,設數(shù)列{an} 的前項和為。由題意可知,{an}是等差數(shù)列,且公差及前20項和已知,所以可利用等差數(shù)列的前項和公式求首項。

解:設報告廳的座位從第1排到第20排,各排的座位數(shù)依次排成一列,構成數(shù)列{an},其前n項和為Sn.根據(jù)題意,數(shù)列{an}是一個公差為2的等差數(shù)列,且S20=800.

因此,第1排應安排21個座位。

解得a1=21.

因此,第1排應安排21個座位.

1.本題屬于與等差數(shù)列前n項和有關的應用題,其關鍵在于構造合適的等差數(shù)列.

2.遇到與正整數(shù)有關的應用題時,可以考慮與數(shù)列知識聯(lián)系,建立數(shù)列模型,具體解決要注意以下兩點:

(1)抓住實際問題的特征,明確是什么類型的數(shù)列模型.

(2)深入分析題意,確定是求通項公式an,或是求前n項和Sn,還是求項數(shù)n.

跟蹤訓練1. 某抗洪指揮部接到預報,24小時后有一洪峰到達,為確保安全,指揮部決定在洪峰到來之前臨時筑一道堤壩作為第二道防線.經(jīng)計算,除現(xiàn)有的參戰(zhàn)軍民連續(xù)奮戰(zhàn)外,還需調用20臺同型號翻斗車,平均每輛車工作24小時.從各地緊急抽調的同型號翻斗車目前只有一輛投入使用,每隔20分鐘能有一輛翻斗車到達,一共可調集25輛,那么在24小時內能否構筑成第二道防線?

分析:因為每隔20分鐘到達一輛車,所以每輛車的工作量構成一個等差數(shù)列.工作量的總和若大于欲完成的工作量,則說明24小時內可完成第二道防線工程.

解:從第一輛車投入工作算起,各車工作時間(單位:小時)依次設為a1,a2,…,a25.由題意可知,此數(shù)列為等差數(shù)列,且a1=24,公差d=-.

25輛翻斗車完成的工作量為:a1+a2+…+a25=2524+2512=500,而需要完成的工作量為2420=480.∵500>480,

在24小時內能構筑成第二道防線.

例9.已知等差數(shù)列{an}的前n項和為Sn,若a1=10,公差d=-2,Sn是否存在最大值?若存在,求Sn的最大值及取得最大值時n的值;若不存在,請說明理由.

分析數(shù)項的和。

另一方面,等差數(shù)列的前n項和公式可寫成

,所以當時, 可以看成二次函數(shù)

,當課件教案= 課件教案時函數(shù)值。如圖,當時, 關于的圖像是一條開口向下的拋物線上的一些點,因此,可以利用二次函數(shù)求相應的課件教案, 的值。

解法1.由d=-2,得an+1-an=-2<0,得an+1<an ,所以{an}是遞減數(shù)列.a1=10,d=-2,

an=10+(n-1)(-2) =-2n+12.

可知,當n<6時,an>0;

當n=6時,an=0;

當n>6時,an<0.

所以, S1<S2<…<S5=S6> S7>…

也就是說,當n=5或6時,Sn最大.

因為 =30

所以Sn的最大值為30.

解法2:因為由a1=10,d=-2,

因為

所以,當n取與 最接近的整數(shù),

即5或6時,Sn最大,最大值為30.

1.在等差數(shù)列中,求Sn的最小(大)值的方法:

(1)利用通項公式尋求正、負項的分界點,則從第一項起到分界點該項的各項和為最大(小).

(2)借助二次函數(shù)的圖象及性質求最值.

2.尋求正、負項分界點的方法:

(1)尋找正、負項的分界點來尋找.

(2)利用到y(tǒng)=ax2+bx(a≠0)的對稱軸距離最近的左側的一個正數(shù)或離對稱軸最近且關于對稱軸對稱的兩個整數(shù)對應項即為正、負項的分界點.

跟蹤訓練2. 數(shù)列{an}的前n項和Sn=33n-n2,

(1)求{an}的通項公式;

(2)問{an}的前多少項和最大;

(3)設bn=|an|,求數(shù)列{bn}的前n項和Sn′.

分析:(1)利用Sn與an的關系求通項,也可由Sn的結構特征求a1,d,從而求出通項.

(2)利用Sn的函數(shù)特征求最值,也可以用通項公式找到通項的變號點求解

(3)利用an判斷哪些項是正數(shù),哪些項是負數(shù),再求解,也可以利用Sn的函數(shù)特征判斷項的正負求解.

[解] (1)法一:(公式法)當n≥2時,an=Sn-Sn-1=34-2n,

又當n=1時,a1=S1=32=34-21滿足an=34-2n.

故{an}的通項公式為an=34-2n.

法二:(結構特征法)由Sn=-n2+33n知Sn是關于n的缺常數(shù)項的二次型函數(shù),所以{an}是等差數(shù)列,由Sn的結構特征知

解得a1=32,d=-2,所以an=34-2n.

(2)法一:(公式法)令an≥0,得34-2n≥0,所以n≤17,

故數(shù)列{an}的前17項大于或等于零.

又a17=0,故數(shù)列{an}的前16項或前17項的和最大.

法二:(函數(shù)性質法)由y=-x2+33x的對稱軸為x=.

距離最近的整數(shù)為16,17.由Sn=-n2+33n的

圖象可知:當n≤17時,an≥0,當n≥18時,an<0,

故數(shù)列{an}的前16項或前17項的和最大.

(3)由(2)知,當n≤17時,an≥0;

當n≥18時,an<0.

所以當n≤17時,Sn′=b1+b2+…+bn

=|a1|+|a2|+…+|an|

=a1+a2+…+an=Sn=33n-n2.

當n≥18時,

Sn=|a1|+|a2|+…+|a17|+|a18|+…+|an|

=a1+a2+…+a17-(a18+a19+…+an)

=S17-(Sn-S17)=2S17-Sn

=n2-33n+544.

故Sn′=

通過課前檢測,檢測學生對知識的掌握情況。發(fā)展學生數(shù)學抽象、數(shù)學運算、數(shù)學建模的核心素養(yǎng)。

通過等差數(shù)列前課件教案項在實際問題中的應用。發(fā)展學生數(shù)學抽象和數(shù)學建模的核心素養(yǎng)。

通過典型例題,加深學生對等差數(shù)列求和公式函數(shù)特征的理解。發(fā)展學生邏輯推理,直觀想象、數(shù)學抽象和數(shù)學運算的核心素。

通過典型例題,加深學生對等差數(shù)列求和公式的綜合運用能力。發(fā)展學生邏輯推理,直觀想象、數(shù)學抽象和數(shù)學運算的核心素

三、達標檢測

1.(多選題)已知Sn是等差數(shù)列{an}的前n項和,且S6>S7>S5,有下列四個命題正確的是( )

A.d<0; B.S11>0; C.S12<0; D.數(shù)列{Sn}中的最大項為S11

【答案】AB

解析∵S6>S7,∴a7<0,∵S7>S5,∴a6+a7>0,

∴a6>0,∴d<0,A正確.又S11(a1+a11)=11a6>0,B正確.

S12(a1+a12)=6(a6+a7)>0,C不正確.{Sn}中最大項為S6,D不正確.

故正確的是AB]

2.已知等差數(shù)列{an}中,|a5|=|a9|,公差d>0,則使得前n項和Sn取得最小值的正整數(shù)n的值是________.

【答案】67

[由|a5|=|a9|且d>0得a5<0,a9>0,且a5+a9=0?2a1+12d=0?

a1+6d=0,即a7=0,故S6=S7且最?。甝

3.已知數(shù)列{an}的前n項和公式為Sn=n2-30n.

(1)求數(shù)列 {an}的通項公式an;

(2)求Sn的最小值及對應的n值.

【答案】 (1)∵Sn=n2-30n,

當n=1時,a1=S1=-29.

當n≥2時,an=Sn-Sn-1=(n2-30n)-[(n-1)2-30(n-1)]=2n-31.

∵n=1也適合,

∴an=2n-31,n∈N*.

(2)法一:Sn=n2-30n=2-225

當n=15時,Sn最小,且最小值為S15=-225.

法二:∵an=2n-31,∴a12<…15<0,當n>15時,an>0.

當n=15時,Sn最小,且最小值為S15=-225.

通過練習鞏固本節(jié)所學知識,通過學生解決問題,發(fā)展學生的數(shù)學運算、邏輯推理、直觀想象、數(shù)學建模的核心素養(yǎng)。


  • 预览结束,下载后可阅读高清完整版文档

    立即下载
最新課件教案文檔
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。

  • 公司2024第一季度意識形態(tài)工作聯(lián)席會議總結

    公司2024第一季度意識形態(tài)工作聯(lián)席會議總結

    一是要把好正確導向。嚴格落實主體責任,逐條逐項細化任務,層層傳導壓力。要抓實思想引領,把理論學習貫穿始終,全身心投入主題教育當中;把理論學習、調查研究、推動發(fā)展、檢視整改等有機融合、一體推進;堅持學思用貫通、知信行統(tǒng)一,努力在以學鑄魂、以學增智、以學正風、以學促干方面取得實實在在的成效。更加深刻領會到******主義思想的科學體系、核心要義、實踐要求,進一步堅定了理想信念,錘煉了政治品格,增強了工作本領,要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質量發(fā)展作出貢獻。二是要加強應急處事能力。認真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強分析預警和應對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質量發(fā)展標桿礦井”、建設“七個一流”能源集團和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強輿情的搜集及應對。加強職工群眾熱點問題的輿論引導,做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應對。

  • 關于2024年上半年工作總結和下半年工作計劃

    關于2024年上半年工作總結和下半年工作計劃

    二是深耕意識形態(tài)。加強意識形態(tài)、網(wǎng)絡輿論陣地建設和管理,把握重大時間節(jié)點,科學分析研判意識形態(tài)領域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風險隱患。積極響應和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設,鍛造堅強有力的基層黨組織。一是提高基層黨組織建設力量。壓實黨建責任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進基層黨建,打造堅強戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強五化”黨組織創(chuàng)建,廣泛開展黨員教育學習活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標同向、部署同步、工作同力。三是加強高素質專業(yè)化黨員隊伍管理。配齊配強支部黨務工作者,把黨務工作崗位作為培養(yǎng)鍛煉干部的重要平臺。

  • XX區(qū)民政局黨支部開展主題教育工作情況總結報告

    XX區(qū)民政局黨支部開展主題教育工作情況總結報告

    二要專注于解決問題。根據(jù)市委促進經(jīng)濟轉型的總要求,聚焦“四個經(jīng)濟”和“雙中心”的建設,深入了解基層科技工作、學術交流、組織建設等方面的實際情況,全面了解群眾的真實需求,解決相關問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關鍵工具和展示平臺。目前,“民聲熱線”已回應了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質性的變化和效果。接下來,我局將繼續(xù)深入學習主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴格的紀律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風貌和活力。

  • 交通運輸局在巡回指導組主題教育階段性工作總結推進會上的匯報發(fā)言

    交通運輸局在巡回指導組主題教育階段性工作總結推進會上的匯報發(fā)言

    今年3月,市政府出臺《關于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達到準二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設首戰(zhàn),諫壁閘一線閘擴容工程開工在即,但項目開工前還有許多實際問題亟需解決。結合“到一線去”專項行動,我們深入到諫壁閘一線,詳細了解工程前期進展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設計方案。牢牢把握高質量發(fā)展這個首要任務,在學思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻”的交通責任,奮力推動交通運輸高質量發(fā)展持續(xù)走在前列。以學促干建新功,關鍵在推動高質量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強調立足新發(fā)展階段、貫徹新發(fā)展理念、構建新發(fā)展格局,推動高質量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟高質量發(fā)展要堅持的主線、重大戰(zhàn)略目標、工作總基調和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。

  • XX區(qū)文旅體局2023年工作總結 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結 及2024年工作安排

    三、2024年工作計劃一是完善基層公共文化服務管理標準化模式,持續(xù)在公共文化服務精準化上探索創(chuàng)新,圍繞群眾需求,不斷調整公共文化服務內容和形式,提升群眾滿意度。推進鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標任務按時保質保量完成。服務“雙減”政策,持續(xù)做好校外培訓機構審批工作,結合我區(qū)工作實際和文旅資源優(yōu)勢,進一步豐富我市義務教育階段學生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結合文旅產業(yè)融合發(fā)展示范區(qū),全力推進全域旅游示范區(qū)創(chuàng)建,嚴格按照《國家全域旅游示范區(qū)驗收標準》要求,極推動旅游產品全域布局、旅游要素全域配置、旅游設施全域優(yōu)化、旅游產業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評語

    精選高中生期末評語

    1、該生學習態(tài)度端正 ,能夠積極配合老師 ,善于調動課堂氣氛。 能夠積極完成老師布置的任務。學習勁頭足,聽課又專注 ,做事更認 真 ,你是同學們學習的榜樣。但是,成績只代表昨天,并不能說明你 明天就一定也很優(yōu)秀。所以,每個人都應該把成績當作自己騰飛的起 點。2、 你不愛說話 ,但勤奮好學,誠實可愛;你做事踏實、認真、為 人忠厚 ,是一個品行端正、有上進心、有良好的道德修養(yǎng)的好學生。在學習上,積極、主動,能按時完成老師布置的作業(yè),經(jīng)過努力 ,各 科成績都有明顯進步,你有較強的思維能力和學習領悟力,學習也有 計劃性,但在老師看來,你的潛力還沒有完全發(fā)揮出來,學習上還要有持久的恒心和頑強的毅力。

  • ××縣招商局2024年上半年工作總結

    ××縣招商局2024年上半年工作總結

    二是全力推進在談項目落地。認真落實“首席服務官”責任制,切實做好上海中道易新材料有機硅復配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團文旅康養(yǎng)產業(yè)項目、三一重能風力發(fā)電項目、中國供銷集團冷鏈物流項目跟蹤對接,協(xié)調解決項目落戶過程中存在的困難和問題,力爭早日實現(xiàn)成果轉化。三是強化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調度及業(yè)務指導,貫徹落實項目建設“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關要求,通過“比實績、曬單子、亮數(shù)據(jù)、拼項目”,進一步營造“比學趕超”濃厚氛圍,掀起招商引資和項目建設新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務。

  • “四零”承諾服務創(chuàng)建工作總結

    “四零”承諾服務創(chuàng)建工作總結

    (二)堅持問題導向,持續(xù)改進工作。要繼續(xù)在提高工作效率和服務質量上下功夫,積極學習借鑒其他部門及xx關于“四零”承諾服務創(chuàng)建工作的先進經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務公開,努力為企業(yè)當好“保姆”,為群眾提供便利,不斷適應新時代人民群眾對政務服務的新需求。(三)深化內外宣傳,樹立良好形象。要深入挖掘并及時總結作風整頓“四零”承諾服務創(chuàng)建工作中形成的典型經(jīng)驗做法,進一步強化內部宣傳與工作交流,推動全市創(chuàng)建工作質效整體提升。要面向社會和公眾莊嚴承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風整頓“四零”承諾服務創(chuàng)建工作成果,不斷擴大社會知情面和群眾知曉率。

  • “改作風、提效能”專項行動工作總結

    “改作風、提效能”專項行動工作總結

    (五)服務群眾提效能方面。一是政府采購服務提檔升級。建成“全區(qū)一張網(wǎng)”,各類采購主體所有業(yè)務實現(xiàn)“一網(wǎng)通辦,提升辦事效率;全面實現(xiàn)遠程開標和不見面開標,降低供應商成本;要求400萬元以上工程采購項目預留采購份額提高至采購比例的40%以上,支持中小企業(yè)發(fā)展。2022年,我區(qū)政府采購榮獲”中國政府采購獎“,并以全國第一的成績獲得數(shù)字政府采購耕耘獎、新聞宣傳獎,以各省中第一的成績獲得年度創(chuàng)新獎。二是財政電子票據(jù)便民利民。全區(qū)財政電子票據(jù)開具量突破1億張,涉及資金810.87億元。特別是在醫(yī)療領域,全區(qū)241家二級以上公立醫(yī)療機構均已全部上線醫(yī)療收費電子票據(jù),大大解決了群眾看病排隊等待時間長、繳費取票不方便的問題,讓患者”省心、省時、省力“。

  • “大學習、大討論、大調研”活動情況總結報告

    “大學習、大討論、大調研”活動情況總結報告

    一、活動開展情況及成效按照省委、市委對“大學習、大討論、大調研”活動的部署要求,縣委立即行動,于8月20日組織召開常委會會議,專題傳達學習省委X在讀書班上的講話精神。5月2日,縣委召開“大學習、大討論、大調研”活動推進會,及時對活動開展的相關要求、任務進行再安排再部署,會后制定并下發(fā)了活動實施方案、重點課題調研方案、宣傳報道方案等系列文件,有效指導活動開展。5月17日、9月1日,縣委再次召開常委會會議,專題聽取“大學習、大討論、大調研”活動開展情況匯報,研究部署下階段工作。9月13日,召開全縣“大學習大討論大調研”活動工作推進座談會,深入貫徹全省、全市“大學習大討論大調研”活動工作推進座談會精神,總結交流活動經(jīng)驗,對下一階段活動開展進行安排部署?!按髮W習、大討論、大調研”活動的有序開展,為砥礪前行、底部崛起的X注入了強大的精神動力。

  • 2024年度工作計劃匯編(18篇)

    2024年度工作計劃匯編(18篇)

    1.市政基礎設施項目5項,總建設里程2.13km,投資概算2.28億元。其中,烔煬大道(涉鐵)工程施工單位已進場,項目部基本建成,正在辦理臨時用地、用電及用水等相關工作;中鐵佰和佰樂(巢湖)二期10KV外線工程已簽訂施工合同;黃麓鎮(zhèn)健康路、緯四路新建工程均已完成清單初稿編制,亟需黃麓鎮(zhèn)完成圖審工作和健康路新建工程的前期證件辦理;公安學院配套道路項目在黃麓鎮(zhèn)完成圍墻建設后即可進場施工。2.公益性建設項目6項,總建筑面積15.62萬㎡,投資概算10.41億元。其中,居巢區(qū)職業(yè)教育中心新建工程、巢湖市世紀新都小學擴建工程已完成施工、監(jiān)理招標掛網(wǎng),2月上旬完成全部招標工作;合肥職業(yè)技術學院大維修三期已完成招標工作,近期簽訂施工合同后組織進場施工;半湯療養(yǎng)院凈化和醫(yī)用氣體工程已完成招標工作;半湯療養(yǎng)院智能化工程因投訴暫時中止;巢湖市中醫(yī)院(中西醫(yī)結合醫(yī)院)新建工程正在按照既定計劃推進,預計4月中下旬掛網(wǎng)招標。