
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質(zhì)把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結(jié):約分的步驟;(1)找公因式.當分子、分母是多項式時應(yīng)先分解因式;(2)約去分子、分母的公因式.三、板書設(shè)計1.分式的基本性質(zhì):分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質(zhì),然后順勢探究分式變號法則.在每個活動中,都設(shè)計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結(jié)、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.

探究點二:列分式方程某工廠生產(chǎn)一種零件,計劃在20天內(nèi)完成,若每天多生產(chǎn)4個,則15天完成且還多生產(chǎn)10個.設(shè)原計劃每天生產(chǎn)x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意可得等量關(guān)系:(原計劃20天生產(chǎn)的零件個數(shù)+10個)÷實際每天生產(chǎn)的零件個數(shù)=15天,根據(jù)等量關(guān)系列出方程即可.設(shè)原計劃每天生產(chǎn)x個,則實際每天生產(chǎn)(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結(jié):此題主要考查了由實際問題抽象出分式方程,關(guān)鍵是正確理解題意,找出題目中的等量關(guān)系,列出方程.三、板書設(shè)計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應(yīng)用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結(jié)合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應(yīng)用,感受數(shù)學之美.

解析:(1)首先提取公因式13,進而求出即可;(2)首先提取公因式20.15,進而求出即可.解:(1)39×37-13×91=3×13×37-13×91=13×(3×37-91)=13×20=260;(2)29×20.15+72×20.15+13×20.15-20.15×14=20.15×(29+72+13-14)=2015.方法總結(jié):在計算求值時,若式子各項都含有公因式,用提取公因式的方法可使運算簡便.三、板書設(shè)計1.公因式多項式各項都含有的相同因式叫這個多項式各項的公因式.2.提公因式法如果一個多項式的各項有公因式,可以把這個公因式提到括號外面,這種因式分解的方法叫做提公因式法.本節(jié)中要給學生留出自主學習的空間,然后引入稍有層次的例題,讓學生進一步感受因式分解與整式的乘法是逆過程,從而可用整式的乘法檢查錯誤.本節(jié)課在對例題的探究上,提倡引導學生合作交流,使學生發(fā)揮群體的力量,以此提高教學效果.

分式1x2-3x與2x2-9的最簡公分母是________.解析:∵x2-3x=x(x-3),x2-9=(x+3)(x-3),∴最簡公分母為x(x+3)(x-3).方法總結(jié):最簡公分母的確定:最簡公分母的系數(shù),取各個分母的系數(shù)的最小公倍數(shù);字母及式子取各分母中所有字母和式子的最高次冪.“所有字母和式子的最高次冪”是指“凡出現(xiàn)的字母(或含字母的式子)為底數(shù)的冪的因式選取指數(shù)最大的”;當分母是多項式時,一般應(yīng)先因式分解.【類型二】 分母是單項式分式的通分通分.(1)cbd,ac2b2;(2)b2a2c,2a3bc2;(3)45y2z,310xy2,5-2xz2.解析:先確定最簡公分母,找到各個分母應(yīng)當乘的單項式,分子也相應(yīng)地乘以這個單項式.解:(1)最簡公分母是2b2d,cbd=2bc2b2d,ac2b2=acd2b2d;(2)最簡公分母是6a2bc2,b2a2c=3b2c6a2bc2,2a3bc2=4a36a2bc2;(3)最簡公分母是10xy2z2,45y2z=8xz10xy2z2,310xy2=3z210xy2z2,5-2xz2=--25y210xy2z2.

解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結(jié):分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內(nèi),把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設(shè)計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結(jié)果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.

方法總結(jié):已知解集求字母系數(shù)的值,通常是先解含有字母的不等式,再利用解集唯一性列方程求字母的值.解題過程體現(xiàn)了方程思想.三、板書設(shè)計1.一元一次不等式的概念2.解一元一次不等式的基本步驟:(1)去分母;(2)去括號;(3)移項;(4)合并同類項;(5)兩邊都除以未知數(shù)的系數(shù).本節(jié)課通過類比一元一次方程的解法得到一元一次不等式的解法,讓學生感受到解一元一次不等式與解一元一次方程只是在兩邊都除以未知數(shù)的系數(shù)這一步時有所不同.如果這個系數(shù)是正數(shù),不等號的方向不變;如果這個系數(shù)是負數(shù),不等號的方向改變.這也是這節(jié)課學生容易出錯的地方.教學時要大膽放手,不要怕學生出錯,通過學生犯的錯誤引起學生注意,理解產(chǎn)生錯誤的原因,以便在以后的學習中避免出錯.

安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設(shè)備2臺,乙種設(shè)備10臺;②購買甲種設(shè)備3臺,乙種設(shè)備9臺;③購買甲種設(shè)備4臺,乙種設(shè)備8臺.方法總結(jié):列不等式組解應(yīng)用題時,一般只設(shè)一個未知數(shù),找出兩個或兩個以上的不等關(guān)系,相應(yīng)地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應(yīng)求整數(shù)解.三、板書設(shè)計1.一元一次不等式組的解法2.一元一次不等式組的實際應(yīng)用利用一元一次不等式組解應(yīng)用題關(guān)鍵是找出所有可能表達題意的不等關(guān)系,再根據(jù)各個不等關(guān)系列成相應(yīng)的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.

解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結(jié):解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設(shè)計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應(yīng)用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內(nèi)容,為以后的學習奠定基礎(chǔ)

解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應(yīng),月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實質(zhì)是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設(shè)計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關(guān)系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎(chǔ),教學中立足于學生的認知基礎(chǔ),激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎(chǔ)上迅速遷移到新知上來

【類型三】 分式方程無解,求字母的值若關(guān)于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結(jié):分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設(shè)計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產(chǎn)生增根;(2)分式方程檢驗的方法.

有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應(yīng)選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應(yīng)把幾種情況進行比較.三、板書設(shè)計應(yīng)用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關(guān)系設(shè)未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結(jié)合,引導學生找不等關(guān)系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

5.游戲活動:每人從信封袋中挑選一個自己最喜歡的分數(shù)卡片。(1)最簡分數(shù)上講臺,和最簡分數(shù)相同的分數(shù)起立。聯(lián)系生活實際發(fā)散性思考。(2)從剩下的同學中找到自己的好朋友。幫最后兩名同學找最簡分數(shù)作朋友。判斷并說明理由。按要求參加活動,綜合考核學生判斷最簡分數(shù)和對分數(shù)進行約分的能力。創(chuàng)設(shè)生活情景,提供了一些現(xiàn)實的學習材料,把書本知識與學生的日常生活聯(lián)系起來,使學生感受到數(shù)學來自生活,并不抽象;學好數(shù)學,為生活、生產(chǎn)服務(wù),學數(shù)學真有價值。部分題目設(shè)計充滿趣味性,把孩子拉入游戲之中,鞏固本課的所有知識點。在引導學生積極觀察、思考、聯(lián)想、誘發(fā)學生的創(chuàng)新因素時,更應(yīng)注意引導學生克服固定的思維模式,鼓勵創(chuàng)造性地發(fā)現(xiàn)知識的規(guī)律和發(fā)表自己的獨特見解。

教學建議:億以內(nèi)數(shù)的讀法是在萬以內(nèi)數(shù)的認識基礎(chǔ)上進行教學的,主要是讓學生用已有的知識去類推,所以在教學本課時我們有必要對萬以內(nèi)數(shù)的認識進行有針對性的復(fù)習。如可采用口答形式復(fù)習數(shù)位順序及各數(shù)位之間的十進關(guān)系。對于萬以內(nèi)數(shù)的讀法,可以出示一組數(shù)據(jù)如:2005年路橋區(qū)前兩個月共實現(xiàn)農(nóng)林、漁業(yè)總產(chǎn)值17013萬元,其中農(nóng)業(yè)產(chǎn)品6383萬元,林業(yè)產(chǎn)值94萬元,漁業(yè)產(chǎn)值7560萬元。在對萬以內(nèi)數(shù)復(fù)習的基礎(chǔ)上我們再出示第2頁主題圖,讓學生讀一讀畫面上呈現(xiàn)的6個大數(shù),也可以讓學生說說身邊聽到,看到的大數(shù)。在這環(huán)節(jié)中我們就讓學生憑著自己的理解運用舊知識去讀數(shù)。這里學生肯定會造成認知上的沖突,從而引入新課教學。新課時可以按以下環(huán)節(jié)進行:1、計數(shù)器操作,認識計數(shù)單位用計數(shù)器數(shù)數(shù),撥上一萬,然后一萬一萬地數(shù),一直數(shù)到九萬后,再加一萬是多少?認識十個一萬是十萬,用同樣的方法,完成一百萬,一千萬,一億的認識。

二、 說學情:二年級的學生由于他們的年齡特點,具有較高的學習熱情,喜歡做游戲,喜歡與他人合作,同時也具備了一些簡單的邏輯推理能力?;谝陨锨闆r,本節(jié)課將以游戲的形式為主,讓學生通過生動有趣、形式多樣的猜測、推理游戲,使學生在具體的情境中感受簡單的推理過程,獲得一些簡單的推理經(jīng)驗,提高學生的分析能力與合作能力。三、說教學目標:知識與技能目標:通過觀察與形式多樣的猜測活動,使學生經(jīng)歷簡單的推理過程,初步獲得一些推理經(jīng)驗。過程與方法目標:通過借助連線、列表等方式整理信息,并按一定的方法進行推理。態(tài)度與價值觀目標:在簡單的推理過程中,使學生感受推理在生后中的廣泛應(yīng)用,初步培養(yǎng)學生有序地、全面地思考問題的意識。培養(yǎng)學生初步的觀察、分析、推理能力。四、說教學重點:經(jīng)歷簡單的推理過程,初步獲得一些簡單的推理經(jīng)驗。五、說教學難點:初步培養(yǎng)學生有序地、全面地思考問題的能力。

四、說教法學法:本課主要采用知識遷移法、直觀教學法、引導發(fā)現(xiàn)法來教學。課上先復(fù)習整數(shù)乘分數(shù),通過已掌握的整數(shù)乘分數(shù)的意義就是表示一個數(shù)的幾分之幾是多少利用知識遷移規(guī)律自然引出1的是1×,1111的就是×,從而得出分數(shù)乘分數(shù)的意義同整數(shù)乘分數(shù)一樣,都表示22221212一個數(shù)的幾分之幾是多少;結(jié)合多媒體直觀演示,進一步幫助學生理解。在探討計算結(jié)果時,讓學生動手折一折,涂一涂,再借助圖形語言動態(tài)直觀演示,幫助學生梳理思維,同時也加深了學生對知識的理解。在方法的總結(jié)上,通過學生對幾個算式的觀察,引導學生發(fā)現(xiàn)分數(shù)乘分數(shù)就用分子相乘的積作分子,分母相乘的積作分母。本節(jié)課學生則主要通過自主探究、合作交流、練習的方法理解并掌握分數(shù)乘分數(shù)的意義及計算方法。五、說教學準備:教師準備多媒體課件、折紙。學生在操作手中有時會產(chǎn)生分歧或者折不出,課件的動態(tài)演示,會有力促進學生的模型建立。

(四)、鞏固練習1.操場上打籃球的有4人,打籃球的人數(shù)是踢足球的 ,踢足球的有多少人?2.踢毽子的人數(shù)是踢足球人數(shù)的 ,踢毽子的有多少人?引導學生找出等量關(guān)系式,然后再解答。指名板演。3.某月雙休日共有9天,是這個月總天數(shù)的 ,這個月有多少天?(課件展示完整過程)(五)、課堂小結(jié),整理內(nèi)化1.我們這節(jié)課學習了用方程解決一類分數(shù)除法應(yīng)用題的方法,你能來總結(jié)一下這類方法的一般步驟嗎?(師生回顧解決問題的步驟并總結(jié))2.課件展示一般步驟:用方程解答分數(shù)除法應(yīng)用題的一般步驟:(1)分析題意,判斷單位“1”(即“總量”)。(2)寫出等量關(guān)系式。(3)設(shè)未知數(shù),列出方程。(4)解方程。(5)寫答語并檢驗。(六)、作業(yè):30頁2、3題

[此環(huán)節(jié)的設(shè)計意圖是利用情景激發(fā)學生探究的欲望,讓學生帶著輕松、愉悅的心情投入到新知的學習中。](二)自主探究感悟新知教育心理學告訴我們,學生應(yīng)當有足夠的時間和空間經(jīng)歷觀察、實驗、猜測、計算、推理、驗證等活動過程。(在兒童的學習活動中,興趣起著定向和動力功能的雙重作用。)以這一理論為指導,我設(shè)計了以下三個層次漸深的活動,大膽放手讓學生自主探究,從而突出重點、突破難點?;顒右唬豪斫夥謹?shù)乘整數(shù)的意義。讓學生通過折一折的活動自主計算,并歸納整理出學生的三計算方法:①根據(jù)分數(shù)的意義數(shù)一數(shù)是3/5;②加法計算1/5+1/5+1/5=3/5;③乘法計算3*1/5=3/5,展示在黑板上,引導學生通過觀察對比發(fā)現(xiàn),其實3*1/5就是3個1/5相加,由此感知到分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,只是這里的相同加數(shù)變成了分數(shù)。

二、學情分析本單元是在學生已經(jīng)學習了整數(shù)除法、分數(shù)乘法的基礎(chǔ)上進行教學的,是小學階段四則運算中最后一部分的內(nèi)容。學生學習了整數(shù)、小數(shù)的四則運算,而分數(shù)只學習了加法、減法和乘法,因此對于學習分數(shù)除法有一定的認知需求,安排分數(shù)除法教學符合學生的認知發(fā)展特點。通過整數(shù)除法、分數(shù)乘法的學習,學生對計算的學習有一定的經(jīng)驗,并具有一定的解決問題的能力,這時候進行分數(shù)除法教學,學生有能力將原有的計算方法和經(jīng)驗進行遷移。學生在學習分數(shù)乘法時,已經(jīng)掌握了一些解決分數(shù)乘法問題的方法,這時候進行分數(shù)除法教學可以促進知識之間的聯(lián)系,提高學生分析問題和解決問題的能力。教師在教學時,應(yīng)充分利用資源,激活學生已有的知識經(jīng)驗,引導他們展開類比思維,以促進學習的正向遷移。三、教學目標根據(jù)新課標的要求和教材的特點,結(jié)合五年級學生的認知能力,本節(jié)課我確定如下的教學目標:

說【教學《內(nèi)容】:北師大版五年級下冊數(shù)學第七單元《用方程解決問題》的第一課時《郵票的張數(shù)》。說【教材分析】;本節(jié)課是在四年級下冊所學的字母表示數(shù),初步認識方程,會用等式的性質(zhì)解決簡單方程,會列方程解決簡單實際問題的基礎(chǔ)上進行教學的。通過本節(jié)課的學習,進一步理解方程的意義,感受方程的思想方法和價值,經(jīng)歷尋找實際問題中數(shù)量之間的相等關(guān)系,列方程求解的全過程,培養(yǎng)學生分析問題,解決問題的能力。說【教學目標】:知識和技能:1、通過解決姐弟二人的郵票張數(shù)問題,學會解形如“aⅹ±ⅹ=b”的方程,進一步理解方程的意義。2、會分析簡單實際問題中的數(shù)量的相等關(guān)系,會用方程解決簡單的實際問題。過程和方法:在解決問題的過程中,體會列方程解決問題的優(yōu)點。情感、態(tài)度、價值觀:在解決問題的過程中,體會數(shù)學的價值,增強學習數(shù)學的興趣。

將三盒磁帶包成一包,共有幾種方案?怎樣包裝才能節(jié)約包裝紙?(接口處不計)這道題,我會組織每一位學生進行擺一擺、想一想、算出最優(yōu)方案。此時,學生對于包裝的問題已經(jīng)有了從感性到理性的認識,因此,可以讓學生將前面總結(jié)出來的規(guī)律進行完善,突出了教學重點。教師板書:重疊面積大的面,會節(jié)約包裝紙。(四)綜合實踐,提高能力。在這一環(huán)節(jié),我設(shè)計了一道題。如果把4盒磁帶包裝成一大盒。怎樣包裝才最節(jié)約包裝紙?此題讓學生小組合作動手擺一擺。學生匯報時,教師多媒體演示:學生根據(jù)前面總結(jié)出來的規(guī)律,會立刻回答出是第一種方案。此環(huán)節(jié)的設(shè)計,使學生在運用規(guī)律的基礎(chǔ)上能夠解決實際問題,得到最優(yōu)方案,也突破了教學難點。(五)課堂總結(jié)。這一環(huán)節(jié),我會讓學生說一說自己的學習體會。然后送給學生兩條名言。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。