
一、情境導(dǎo)入游泳是一項(xiàng)深受青少年喜愛的體育活動,學(xué)校為了加強(qiáng)學(xué)生的安全意識,組織學(xué)生觀看了紀(jì)實(shí)片《孩子,請不要私自下水》,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.你能根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會下河游泳”?二、合作探究探究點(diǎn)一:頻數(shù)直方圖的制作小紅家開了一個(gè)報(bào)亭,為了使每天進(jìn)的某種報(bào)紙適量,小紅對這種報(bào)紙40天的銷售情況作了調(diào)查,這40天賣出這種報(bào)紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:

新建成的紅星中學(xué),首次招收七年級新生12個(gè)班共500人,學(xué)校準(zhǔn)備修建一個(gè)自行車車棚.請問需要修建多大面積的自行車車棚?請你設(shè)計(jì)一個(gè)調(diào)查方案解決這個(gè)問題.解析:決定自行車車棚面積的因素有兩個(gè),即自行車的數(shù)量與每輛自行車的占地面積.因此收集數(shù)據(jù)的重點(diǎn)應(yīng)圍繞這兩個(gè)因素進(jìn)行.解:調(diào)查方案如下:(1)對全體新生的到校方式進(jìn)行問卷調(diào)查.調(diào)查問卷如下:你到校的方式是騎自行車嗎?A.經(jīng)常是 B.不經(jīng)常是C.很少是 D.從不是(2)根據(jù)調(diào)查問卷結(jié)果分類統(tǒng)計(jì)騎自行車的人數(shù);(3)實(shí)際測量或估計(jì)存放1輛自行車的大約占地面積;(4)根據(jù)學(xué)校的建設(shè)規(guī)劃、財(cái)力等因素確定自行車車棚的面積.方法總結(jié):確定調(diào)查方案時(shí)必須明確兩個(gè)問題:(1)需要收集哪些數(shù)據(jù)?(2)采用什么方式進(jìn)行調(diào)查可以獲得這些數(shù)據(jù)?探究點(diǎn)三:從圖表中獲取信息小冰就公眾對在餐廳吸煙的態(tài)度進(jìn)行了調(diào)查,并將調(diào)查結(jié)果制作成如圖所示的統(tǒng)計(jì)圖,請根據(jù)圖中的信息回答下列問題:

將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點(diǎn)來表示相應(yīng)的數(shù),再利用它們對應(yīng)點(diǎn)的位置來判斷各數(shù)的大小.解:如圖:由數(shù)軸可知-212<-2<0<+1<314.方法總結(jié):一般地,數(shù)軸上多個(gè)數(shù)的大小比較,可利用“數(shù)軸上兩個(gè)點(diǎn)表示的數(shù),右邊的總比左邊的大”這一性質(zhì)進(jìn)行比較.探究點(diǎn)四:點(diǎn)在數(shù)軸上的移動問題點(diǎn)A為數(shù)軸上表示-2的動點(diǎn),當(dāng)點(diǎn)A沿?cái)?shù)軸移動4個(gè)單位長度到點(diǎn)B時(shí),點(diǎn)B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點(diǎn)A為數(shù)軸上表示-2的動點(diǎn),①當(dāng)點(diǎn)A沿?cái)?shù)軸向左移動4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為-6;②當(dāng)點(diǎn)A沿?cái)?shù)軸向右移動4個(gè)單位長度時(shí),點(diǎn)B所表示的有理數(shù)為2.故選C.方法總結(jié):點(diǎn)A在數(shù)軸上移動要注意分兩種情況:一個(gè)向左,一個(gè)向右,不要漏掉其中的一種情況.

【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.

一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對求一個(gè)數(shù)的算術(shù)平方根十分有用.

4、 填表:相反數(shù) 絕對值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對值是6 , 1.2 , 0 的數(shù)6、 計(jì)算:(1) (2) 五、探究學(xué)習(xí)1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請通過列式計(jì)算回答下列兩個(gè)問題:(1) 這個(gè)人乘車一共行駛了多少千米?(2) 這個(gè)人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結(jié)一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因?yàn)樗哌^ 的距離之和,有時(shí)候我們是無法 想象的。這就是今天所學(xué)的絕對值的意義所在。所以絕對值是不考慮方向意義時(shí)的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應(yīng)的部分。

16.已知甲組有28人,乙組有20人,則下列調(diào)配方法中,能使一組人數(shù)為另一組人數(shù)的一半的是( ).A.從甲組調(diào)12人去乙組 B.從乙組調(diào)4人去甲組C.從乙組調(diào)12人去甲組 D.從甲組調(diào)12人去乙組,或從乙組調(diào)4人去甲組17.足球比賽的規(guī)則為勝一場得3分,平一場得1分,負(fù)一場是0分,一個(gè)隊(duì)打了14場比賽,負(fù)了5場,共得19分,那么這個(gè)隊(duì)勝了( )場.A.3 B.4 C.5 D.618.如圖所示,在甲圖中的左盤上將2個(gè)物品取下一個(gè),則在乙圖中右盤上取下幾個(gè)砝碼才能使天平仍然平衡?( )A.3個(gè) B.4個(gè) C.5個(gè) D.6個(gè)三、解答題.(19,20題每題6分,21,22題每題7分,23,24題每題10分,共46分)19.解方程:2(x-3)+3(2x-1)=5(x+3)20.解方程: 21.如圖所示,在一塊展示牌上整齊地貼著許多資料卡片,這些卡片的大小相同,卡片之間露出了三塊正方形的空白,在圖中用斜線標(biāo)明.已知卡片的短邊長度為10厘米,想要配三張圖片來填補(bǔ)空白,需要配多大尺寸的圖片.

1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關(guān)系,并會進(jìn)行簡單的換算.一、情境導(dǎo)入鐘表是我們生活中常見的物品,同學(xué)們,你能說出圖中每個(gè)鐘表時(shí)針與分針?biāo)傻慕嵌葐??學(xué)完了下面的內(nèi)容,就會知道答案.二、合作探究探究點(diǎn)一:角的概念及其表示方法【類型一】 對角的概念的考查下列關(guān)于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點(diǎn);④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形.A.1個(gè) B.2個(gè) C.3個(gè) D.4個(gè)解析:①角是由有公共端點(diǎn)的兩條射線組成的圖形,錯(cuò)誤;②角的大小與開口大小有關(guān),角的邊是射線,沒有長短之分,錯(cuò)誤;③角的邊是射線,不能延長,錯(cuò)誤;④角可以看作由一條射線繞著它的端點(diǎn)旋轉(zhuǎn)而形成的圖形,說法正確.所以只有④正確.故選A.

方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負(fù),去掉絕對值符號.探究點(diǎn)四:含括號的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價(jià),售出40件后,由于庫存積壓,調(diào)整為按售價(jià)的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價(jià)為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價(jià)與后60件的售價(jià)即可確定出總售價(jià);(2)由“利潤=售價(jià)-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價(jià)為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號法則和熟練運(yùn)用合并同類項(xiàng)的法則.

第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對 “溫故而知新” 的體會,知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識.第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.

已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.

1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強(qiáng)概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.

一.學(xué)習(xí)目的和要求:1.對本章內(nèi)容的認(rèn)識更全面、更系統(tǒng)化。2.進(jìn)一步加深對本章基礎(chǔ)知識的理解以及基本技能的掌握,并能靈活運(yùn)用。二.學(xué)習(xí)重點(diǎn)和難點(diǎn):重點(diǎn):本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用。難點(diǎn):本章基礎(chǔ)知識的歸納、總結(jié);基礎(chǔ)知識的運(yùn)用;整式的加減運(yùn)算的靈活運(yùn)用與提高。三.學(xué)習(xí)方法:歸納,總結(jié) 交流、練習(xí) 探究 相結(jié)合 四.教學(xué)目標(biāo)和教學(xué)目標(biāo)解析:教學(xué)目標(biāo)1 同類項(xiàng) 同類項(xiàng):所含字母相同,并且相同字母的指數(shù)也分別相等的項(xiàng),另外所有的常數(shù)項(xiàng)都是同類項(xiàng)。例如: 與 是同類項(xiàng); 與 是同類項(xiàng)。注意:同類項(xiàng)與系數(shù)大小無關(guān),與字母的排列順序無關(guān)。教學(xué)目標(biāo)2 合并同類項(xiàng)法則 合并同類項(xiàng)法則:把同類項(xiàng)的系數(shù)相加,所得結(jié)果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。

. 一個(gè)數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯(cuò)誤的是()A.任何數(shù)的絕對值一定是非負(fù)數(shù); B.一個(gè)負(fù)數(shù)的絕對值一定是正數(shù);C.一個(gè)正數(shù)的絕對值一定是正數(shù); D.一個(gè)數(shù)不是正數(shù)就是負(fù)數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個(gè)有理數(shù)的和是正數(shù),積是負(fù)數(shù),則這兩個(gè)有理數(shù)( )A.都是正數(shù); B.都是負(fù)數(shù); C.一正一負(fù),且正數(shù)的絕對值較大; D.一正一負(fù),且負(fù)數(shù)的絕對值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當(dāng)n為正整數(shù)時(shí), 的值是()

1、如圖,OA、OB是兩條射線,C是OA上一點(diǎn),D、E是OB上兩點(diǎn),則圖中共有 條錢段、它們分別是 ;圖中共有 射線,它們分別是 。2、如果線段AB=5cm,BC=3cm,那么A、C兩點(diǎn)間的距離是 3、(1)用度、分、秒表示48.26° (2)用度表示37°28′24″ 4、從3點(diǎn)到5點(diǎn)30分,時(shí)鐘的時(shí)針轉(zhuǎn)過了 度。5、一輪船航行到B處測得小島A的方向?yàn)楸逼?0°,則從A處觀測此B處的方向?yàn)椋? ) A. 南偏東30° B. 東偏北30° C. 南偏東60° D. 東偏北60°6、已知,OA⊥OC,∠AOB∶∠AOC=2∶3,則∠BOC的度數(shù)為( )A. 30° B. 150° C. 30°或150° D. 不同于上述答案7、如圖,AO⊥OB,直線CD過點(diǎn)O,且∠BOD=130°,求∠AOD的大小。8、已知:如圖,B、C兩點(diǎn)把線段AD分成2∶4∶3三部分,M是AD的中點(diǎn),CD=6,求:線段MC的長。9、平面上有n個(gè)點(diǎn)(n≥2)且任意三個(gè)點(diǎn)不在同一直線上,經(jīng)過每兩個(gè)點(diǎn)畫一條直線,一共可以畫多少條直線?遷移:某足球比賽中有20個(gè)球隊(duì)進(jìn)行單循環(huán)比賽(每兩隊(duì)之間必須比賽一場),那么一共要進(jìn)行多少場比賽?

一、教學(xué)目標(biāo):1、會辨認(rèn)基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會畫基本幾何體的三視圖,會判斷簡單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實(shí)背景中抽象出空間幾何體和基本平面圖形,進(jìn)一步認(rèn)識點(diǎn)、線、面。6、獲得一些研究問題的方法和經(jīng)驗(yàn),發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識。7、體驗(yàn)數(shù)學(xué)知識之間的內(nèi)在聯(lián)系,初步形成對數(shù)學(xué)整體性的認(rèn)識。教學(xué)重點(diǎn):在具體的情境中,認(rèn)識一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點(diǎn):是描述幾何體的特征,對幾何體進(jìn)行分類。二、設(shè)疑自探1、梳理本章知識(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個(gè)生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)

一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時(shí)也帶籃子稱,這樣既省事又互不吃虧.”你認(rèn)為攤主的話有道理嗎?請你用所學(xué)的有關(guān)數(shù)學(xué)知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實(shí)換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運(yùn)用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計(jì)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,本節(jié)課從實(shí)際問題入手,引出合并同類項(xiàng)的概念.通過獨(dú)立思考、討論交流等方式歸納出合并同類項(xiàng)的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識.教學(xué)中應(yīng)激發(fā)學(xué)生主動參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.

本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過程。在總結(jié)出同類項(xiàng)定義后,沒有按通常的做法,即直接分析定義中的兩個(gè)條件,強(qiáng)調(diào)兩個(gè)條件缺一不可,而是通過一組練習(xí),讓學(xué)生在具體問題中體會定義中的兩個(gè)條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識,而后,分析定義中的兩個(gè)條件,這樣會給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計(jì)既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會更顯數(shù)學(xué)教學(xué)的枯燥,而且會使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項(xiàng)的概念時(shí),當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項(xiàng)。

1.會用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個(gè)角的和、差、倍、分的意義,會進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測量∠α的度數(shù).請你運(yùn)用所學(xué)的知識分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.

方法總結(jié):由絕對值的定義可知,一個(gè)數(shù)的絕對值越小,離原點(diǎn)越近.將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對值的非負(fù)性已知|x-3|+|y-2|=0,求x+y的值.解析:一個(gè)數(shù)的絕對值總是大于或等于0,即為非負(fù)數(shù),若兩個(gè)非負(fù)數(shù)的和為0,則這兩個(gè)數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個(gè)非負(fù)數(shù)的和為0,則這幾個(gè)數(shù)都為0.三、板書設(shè)計(jì)絕對值相反數(shù)絕對值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個(gè)數(shù)的絕對值相等兩個(gè)負(fù)數(shù)比較大?。航^對值大的反而小絕對值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語,是本章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義的.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。