提供各類精美PPT模板下載
當(dāng)前位置:首頁 > Word文檔 >

人教版高中政治必修2民主決策:作出最佳的選擇教案

  • 人教版高中地理必修2綠色產(chǎn)品知多少說課稿

    人教版高中地理必修2綠色產(chǎn)品知多少說課稿

    各小組派代表匯報。4、教師提出問題組織學(xué)生討論:⑴要想了解更多的綠色食品,了解綠色食品的銷售情況,我們應(yīng)該怎么做?⑵要想了解廣大消費者對綠色食品的態(tài)度,食用綠色食品的意義,是否懂得辨認(rèn)綠色食品,以及什么樣的人群對此知識最缺乏等,我們應(yīng)該怎么做?組織學(xué)生匯報交流。5、做個“綠色食品”廣告設(shè)計師。為你喜歡的綠色食品設(shè)計廣告語,每組推薦一個。6、讓學(xué)生了解綠色食品認(rèn)證程序。7、綠色食品打“假”隊員在行動。8、向?qū)W生介紹生態(tài)綠色食品基地。三、活動總結(jié):通過研究、探討,了解學(xué)生對綠色食品的態(tài)度。提問:民以食為天,吃,是一個大問題,如果你的爸爸媽媽讓你到超市買牛奶、方便面等,你會選擇什么樣的食品?為什么?希望通過今天的學(xué)習(xí),同學(xué)們能夠做到綠色消費,也希望你們向自己的家人、向周圍的了解學(xué)生對“無公害食品”、“有機(jī)食品”與“綠色食品”的認(rèn)識。

  • 人教版新課標(biāo)高中物理必修1摩擦力說課稿2篇

    人教版新課標(biāo)高中物理必修1摩擦力說課稿2篇

    本節(jié)課是人教社物理必修1第三章第三節(jié)的內(nèi)容,編排在彈力之后。該節(jié)知識既是力學(xué)的基礎(chǔ),也是組成整個高中物理知識的一塊“基石”,所以這節(jié)內(nèi)容的教學(xué)如何引領(lǐng)學(xué)生自主積極地探究摩擦力產(chǎn)生的條件和影響因素,體驗?zāi)Σ亮μ攸c規(guī)律的發(fā)生過程是本節(jié)課的重點,應(yīng)高度重視本節(jié)教學(xué)過程;由于摩擦力問題的復(fù)雜性,且在具體問題中又表現(xiàn)出“動中有靜,靜中有動”,尤其靜摩擦在許多情形下似乎又是“若有若無,方向不定”,因此,對于初學(xué)者也是有一定難度的。也正是由于教材內(nèi)容的上述特點,本節(jié)課又易于激起學(xué)生的求知欲,易于培養(yǎng)學(xué)生的辯證觀點,易于錘煉學(xué)生的物理素質(zhì)。要充分用好該節(jié)教材內(nèi)容,深入挖掘知識間的有機(jī)聯(lián)系,對學(xué)生開展針對性的思維訓(xùn)練,進(jìn)而提高學(xué)生應(yīng)用物理知識解決實際問題的能力和創(chuàng)新思維能力。高中物理《課標(biāo)》對該知識點的要求是,“通過實驗認(rèn)識滑動摩擦、靜摩擦的規(guī)律,能用動摩擦因數(shù)計算摩擦力”。其中,對靜摩擦力規(guī)律的認(rèn)識應(yīng)該包括最大靜摩擦力。

  • 人教版新課標(biāo)高中物理必修2向心力說課稿3篇

    人教版新課標(biāo)高中物理必修2向心力說課稿3篇

    通過這個示例呢,我們可以得到解決向心力問題的一般的步驟,確定對象,找出軌跡,找出圓心,然后進(jìn)行受力分析,讓同學(xué)們參考這樣的步驟,逐步的解決圓周運動的問題,對于變速圓周運動,我通過鏈球運動進(jìn)行引入,這里是一個鏈球運動的視頻,在同學(xué)們觀看視頻之前,我給同學(xué)們提出問題,鏈球收到繩子的拉力,做的是勻速圓周運動嗎? 然后再課堂上我們再做一個小實驗, 我們可以通過改變拉線的方式來調(diào)節(jié)小球的速度大小嗎? 那么對小球,做加速圓周運動,進(jìn)行受力分析,我們可以看到,小球做加速運動時,他所受到的力,并不是嚴(yán)格通過軌跡的圓心,在進(jìn)行分析的時候,特別強(qiáng)調(diào),小桶所受力的切線方向分力,和法線方向分力,切線方向分力,改變小球運動速度大小,法線方向分力,改變了小球運動的方向,法線方向的分力,在這里就是向心力,產(chǎn)生了向心加速度,通過這樣一個例子進(jìn)行分析,同學(xué)們是比較容易理解的,

  • 新人教版高中英語必修3Unit 4 Space Exploration-Discovering Useful Structures導(dǎo)學(xué)案

    新人教版高中英語必修3Unit 4 Space Exploration-Discovering Useful Structures導(dǎo)學(xué)案

    【點津】 1.不定式的復(fù)合結(jié)構(gòu)作目的狀語 ,當(dāng)不定式或不定式短語有自己的執(zhí)行者時,要用不定式的復(fù)合結(jié)構(gòu)?即在不定式或不定式短語之前加 for +名詞或賓格代詞?作狀語。He opened the door for the children to come in. 他開門讓孩子們進(jìn)來。目的狀語從句與不定式的轉(zhuǎn)換 英語中的目的狀語從句,還可以變?yōu)椴欢ㄊ交虿欢ㄊ蕉陶Z作狀語,從而使句子在結(jié)構(gòu)上得以簡化??煞譃閮煞N情況: 1?當(dāng)目的狀語從句中的主語與主句中的主語相同時,可以直接簡化為不定式或不定式短語作狀語。We'll start early in order that/so that we may arrive in time. →We'll start early in order to/so as to arrive in time. 2?當(dāng)目的狀語從句中的主語與主句中的主語不相同時,要用動詞不定式的復(fù)合結(jié)構(gòu)作狀語。I came early in order that you might read my report before the meeting. →I came early in order for you to read my report before the meeting.

  • 兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩點間的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)在一條筆直的公路同側(cè)有兩個大型小區(qū),現(xiàn)在計劃在公路上某處建一個公交站點C,以方便居住在兩個小區(qū)住戶的出行.如何選址能使站點到兩個小區(qū)的距離之和最小?二、探究新知問題1.在數(shù)軸上已知兩點A、B,如何求A、B兩點間的距離?提示:|AB|=|xA-xB|.問題2:在平面直角坐標(biāo)系中能否利用數(shù)軸上兩點間的距離求出任意兩點間距離?探究.當(dāng)x1≠x2,y1≠y2時,|P1P2|=?請簡單說明理由.提示:可以,構(gòu)造直角三角形利用勾股定理求解.答案:如圖,在Rt △P1QP2中,|P1P2|2=|P1Q|2+|QP2|2,所以|P1P2|=?x2-x1?2+?y2-y1?2.即兩點P1(x1,y1),P2(x2,y2)間的距離|P1P2|=?x2-x1?2+?y2-y1?2.你還能用其它方法證明這個公式嗎?2.兩點間距離公式的理解(1)此公式與兩點的先后順序無關(guān),也就是說公式也可寫成|P1P2|=?x2-x1?2+?y2-y1?2.(2)當(dāng)直線P1P2平行于x軸時,|P1P2|=|x2-x1|.當(dāng)直線P1P2平行于y軸時,|P1P2|=|y2-y1|.

  • 點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    點到直線的距離公式教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    4.已知△ABC三個頂點坐標(biāo)A(-1,3),B(-3,0),C(1,2),求△ABC的面積S.【解析】由直線方程的兩點式得直線BC的方程為 = ,即x-2y+3=0,由兩點間距離公式得|BC|= ,點A到BC的距離為d,即為BC邊上的高,d= ,所以S= |BC|·d= ×2 × =4,即△ABC的面積為4.5.已知直線l經(jīng)過點P(0,2),且A(1,1),B(-3,1)兩點到直線l的距離相等,求直線l的方程.解:(方法一)∵點A(1,1)與B(-3,1)到y(tǒng)軸的距離不相等,∴直線l的斜率存在,設(shè)為k.又直線l在y軸上的截距為2,則直線l的方程為y=kx+2,即kx-y+2=0.由點A(1,1)與B(-3,1)到直線l的距離相等,∴直線l的方程是y=2或x-y+2=0.得("|" k"-" 1+2"|" )/√(k^2+1)=("|-" 3k"-" 1+2"|" )/√(k^2+1),解得k=0或k=1.(方法二)當(dāng)直線l過線段AB的中點時,A,B兩點到直線l的距離相等.∵AB的中點是(-1,1),又直線l過點P(0,2),∴直線l的方程是x-y+2=0.當(dāng)直線l∥AB時,A,B兩點到直線l的距離相等.∵直線AB的斜率為0,∴直線l的斜率為0,∴直線l的方程為y=2.綜上所述,滿足條件的直線l的方程是x-y+2=0或y=2.

  • 兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩條平行線間的距離教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    一、情境導(dǎo)學(xué)前面我們已經(jīng)得到了兩點間的距離公式,點到直線的距離公式,關(guān)于平面上的距離問題,兩條直線間的距離也是值得研究的。思考1:立定跳遠(yuǎn)測量的什么距離?A.兩平行線的距離 B.點到直線的距離 C. 點到點的距離二、探究新知思考2:已知兩條平行直線l_1,l_2的方程,如何求l_1 〖與l〗_2間的距離?根據(jù)兩條平行直線間距離的含義,在直線l_1上取任一點P(x_0,y_0 ),,點P(x_0,y_0 )到直線l_2的距離就是直線l_1與直線l_2間的距離,這樣求兩條平行線間的距離就轉(zhuǎn)化為求點到直線的距離。兩條平行直線間的距離1. 定義:夾在兩平行線間的__________的長.公垂線段2. 圖示: 3. 求法:轉(zhuǎn)化為點到直線的距離.1.原點到直線x+2y-5=0的距離是( )A.2 B.3 C.2 D.5D [d=|-5|12+22=5.選D.]

  • 兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    兩直線的交點坐標(biāo)教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.直線2x+y+8=0和直線x+y-1=0的交點坐標(biāo)是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標(biāo)是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設(shè)交點坐標(biāo)為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標(biāo)為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標(biāo)為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個頂點坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓的一般方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    情境導(dǎo)學(xué)前面我們已討論了圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進(jìn)行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標(biāo) (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標(biāo)準(zhǔn)方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當(dāng)D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當(dāng)D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當(dāng)D2+E2-4F0);

  • 圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    圓與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關(guān)系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O(shè)1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O(shè)2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設(shè)所求圓心坐標(biāo)為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設(shè)所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的點斜式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線與圓的位置關(guān)系教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關(guān)系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設(shè)切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進(jìn)而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標(biāo),解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設(shè)兩交點A,B的坐標(biāo)分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關(guān)系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(biāo)(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的兩點式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設(shè)其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標(biāo)軸圍成的三角形的面積是 . 解析:直線在兩坐標(biāo)軸上的截距分別為1/a 與 1/b,所以直線與坐標(biāo)軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    直線的一般式方程教學(xué)設(shè)計人教A版高中數(shù)學(xué)選擇性必修第一冊

    解析:當(dāng)a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    高中思想政治人教版必修三《文化創(chuàng)新的途徑》說課稿

    二、說學(xué)情本課的教學(xué)對象為高二學(xué)生,他們思維活躍已具備一定歸納能力和分析、綜合能力,能夠自主地分析現(xiàn)實生活中的一些文化行為,但看問題往往比較偏激、片面,缺乏良好的邏輯思維能力。所以,在文化創(chuàng)新的途徑上要對他們進(jìn)行指導(dǎo),以免走入誤區(qū)。三、教學(xué)目標(biāo)根據(jù)新課程標(biāo)準(zhǔn)、教材特點、學(xué)生的實際,我確定了如下教學(xué)目標(biāo):【知識與能力目標(biāo)】1.理解文化創(chuàng)新的根本途徑和兩個基本途徑;2.了解文化創(chuàng)新過程中需要堅持正確方向,克服錯誤傾向。

  • 人教版高中語文必修3《多思善想 學(xué)習(xí)選取立論的角度》說課稿

    人教版高中語文必修3《多思善想 學(xué)習(xí)選取立論的角度》說課稿

    談到這,如果有人會說這僅僅是在于我個人與戰(zhàn)場之上,戰(zhàn)場之下另當(dāng)別論,那么,他完全錯了。在我小學(xué)四年級的語文課上有兩個人發(fā)言積極,一個姓黃,一個姓康,黃同學(xué)發(fā)言比康同學(xué)更積極,班上的同學(xué)常以為黃同學(xué)是個了不得的人物,后來,教語文的吳老師曾悄悄地告訴我:班上真正厲害的是康x,那黃x沒什么,說的全是“一點通”上的,照搬不誤。說到這,我還得厚著臉皮自夸一下,在四年級時,我和康同學(xué)是同坐,一次,老師叫我們對一片課文(好象是寫黃繼光舍身炸暗堡)的一個段落提問題時,我悄悄地對康同學(xué)說了一個問題,康同學(xué)對我說:“你站起來說嘛?!眱?nèi)向的我遙遙頭,康同學(xué)便站舉手,并起來將我的問題大聲地說了出來,結(jié)果老師說:“恩,康x的問題提得很好?!?/p>

  • 人教版高中語文必修2《成語:中華文化的微縮景觀》說課稿2篇

    人教版高中語文必修2《成語:中華文化的微縮景觀》說課稿2篇

    (三)教學(xué)目標(biāo)1、明確成語的來源,了解成語的結(jié)構(gòu)特點。2、學(xué)習(xí)積累成語的方法。3、梳理學(xué)習(xí)過的成語,做到能正確理解、使用所學(xué)的常用成語。(四)教學(xué)重點和難點1、學(xué)習(xí)積累成語的方法。2、正確理解、使用所學(xué)的常用成語。二、說教法新的《高中語文課程標(biāo)準(zhǔn)》要求學(xué)生主動去發(fā)現(xiàn)問題、解決問題,教師是課堂學(xué)習(xí)的組織者、參與者,是課堂的主導(dǎo),而不是課堂的主體。而且,新的課程標(biāo)準(zhǔn)要求學(xué)生“能圍繞所選擇的目標(biāo)加強(qiáng)語文積累,在積累的過程中,注重梳理”。在這種前提下,本節(jié)課可以采取以下方法:由于這種梳理是對學(xué)生已有的知識進(jìn)行歸納分類,可能顯得比較枯燥。為了避免這種枯燥感,可以采取設(shè)置情境和分組競答的方法,調(diào)動學(xué)生的積極性。

  • 人教版高中歷史必修2近代中國經(jīng)濟(jì)結(jié)構(gòu)的變動說課稿2篇

    人教版高中歷史必修2近代中國經(jīng)濟(jì)結(jié)構(gòu)的變動說課稿2篇

    1842年鴉片戰(zhàn)爭清政府戰(zhàn)敗,簽訂《南京條約》,以英國為首的外國資本主義開始入侵,五口通商,協(xié)議關(guān)稅,西方商品輸入與日俱增,機(jī)器化大生產(chǎn)速度快,用政治經(jīng)濟(jì)學(xué)的觀點就是社會必要勞動時間少,成本低,價格更加便宜,所謂物美價廉,市場競爭力強(qiáng),材料:1845年,福州官員奏稱:洋貨“充積于廈口”。洋布、洋棉“其質(zhì)既美、其價復(fù)廉,民間之買洋布、洋棉者,十室而九?!币虼?,“江浙之棉布不復(fù)暢銷”。生:洋貨的輸入,土布土紗的銷售陷入困境,賣不出去,依靠它生活的手工業(yè)者就活不下去了,一部分棉紡織業(yè)手工者破產(chǎn)失業(yè),為了維持生計,流入城市工廠,替別人打工,成為自由勞動力;以前吃穿自己生產(chǎn),現(xiàn)在吃穿要買,于是這部分手工業(yè)者從生產(chǎn)者變成了消費者,有了消費就有了市場。

  • 人教版高中歷史必修3西方人文主義思想的起源說課稿

    人教版高中歷史必修3西方人文主義思想的起源說課稿

    蘇格拉底把裝有毒酒的杯子舉到胸口,平靜地說:“分手的時候到了,我將死,你們活下來,是誰的選擇好,只有天知道。”說畢,一口喝干了毒酒。(2) 蘇格拉底臨死前對一個叫克力同的人說了這樣一番話??肆ν腋嬖V你,這幾天一直有一個神的聲音在我心中曉喻我,他說:“蘇格拉底,還是聽我們的建議吧,我們是你的衛(wèi)士。不要考慮你的子女、生命或其他東西勝過考慮什么是公正?!聦嵣夏憔鸵x開這里了。當(dāng)你去死的時候,你是個犧牲品,但不是我們所犯錯誤的犧牲品,而是你同胞所犯錯誤的犧牲品。但你若用這種可恥的方法逃避,以錯還錯,以惡報惡,踐踏你自己和我們訂立的協(xié)議合約,那么你傷害了你最不應(yīng)該傷害的,包括你自己、你的朋友、你的國家,還有我們。到那時,你活著面對我們的憤怒,你死后我們的兄弟、冥府里的法律也不會熱情歡迎你;因為它們知道你試圖盡力摧毀我們。別接受克力同的建議,聽我們的勸告吧?!?/p>

上一頁123...313233343536373839404142下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。