提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版初中數(shù)學九年級上冊配方法說課稿

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的計算2教案

    解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值2教案

    ③設每件襯衣降價x元,獲得的利潤為y元,則定價為 元 ,每件利潤為 元 ,每星期多賣 件,實際賣出 件。所以Y= 。(0<X<20)何時有最大利潤,最大利潤為多少元?比較以上兩種可能,襯衣定價多少元時,才能使利潤最大?☆ 歸納反思 ☆總結得出求最值問題的一般步驟:(1)列出二次函數(shù)的解析式,并根據(jù)自變量的實際意義,確定自變量的取值范圍;(2)在自變量的取值范圍內,運用公式法或通過配方法求出二次函數(shù)的最值?!? 達標檢測 ☆ 1、用長為6m的鐵絲做成一個邊長為xm的矩形,設矩形面積是ym2,,則y與x之間函數(shù)關系式為 ,當邊長為 時矩形面積最大.2、藍天汽車出租公司有200輛出租車,市場調查表明:當每輛車的日租金為300元時可全部租出;當每輛車的日租金提高10元時,每天租出的汽車會相應地減少4輛.問每輛出租車的日租金提高多少元,才會使公司一天有最多的收入?

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題1教案

    (2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結合二次函數(shù)與一次函數(shù)的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關鍵.

  • 北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    北師大初中九年級數(shù)學下冊商品利潤最大問題2教案

    (8)物價部門規(guī)定,此新型通訊產品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

  • 北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    北師大初中九年級數(shù)學下冊圖形面積的最大值1教案

    如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

  • 北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    北師大初中九年級數(shù)學下冊弧長及扇形的面積教案

    1.了解扇形的概念,理解n°的圓心角所對的弧長和扇形面積的計算公式并熟練掌握它們的應用;(重點)2.通過復習圓的周長、圓的面積公式,探索n°的圓心角所對的弧長l=nπR180和扇形面積S扇=nπR2360的計算公式,并應用這些公式解決一些問題.(難點)一、情境導入如圖是圓弧形狀的鐵軌示意圖,其中鐵軌的半徑為100米,圓心角為90°.你能求出這段鐵軌的長度嗎(π 取3.14)?我們容易看出這段鐵軌是圓周長的14,所以鐵軌的長度l≈2×3.14×1004=157(米). 如果圓心角是任意的角度,如何計算它所對的弧長呢?二、合作探究探究點一:弧長公式【類型一】 求弧長如圖,某廠生產橫截面直徑為7cm的圓柱形罐頭盒,需將“蘑菇罐頭”字樣貼在罐頭側面.為了獲得較佳視覺效果,字樣在罐頭盒側面所形成的弧的度數(shù)為90°,則“蘑菇罐頭”字樣的長度為()

  • 北師大初中九年級數(shù)學下冊解直角三角形2教案

    北師大初中九年級數(shù)學下冊解直角三角形2教案

    首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

  • 北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    北師大初中九年級數(shù)學下冊圓周角和圓心角的關系教案

    解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調,借助多媒體加以突出.

  • 北師大初中九年級數(shù)學下冊切線的判定及三角形的內切圓教案

    北師大初中九年級數(shù)學下冊切線的判定及三角形的內切圓教案

    解析:(1)連接BI,根據(jù)I是△ABC的內心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內心的性質,以及圓周角定理.

  • 北師大初中九年級數(shù)學下冊解直角三角形1教案

    北師大初中九年級數(shù)學下冊解直角三角形1教案

    方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升” 第7題【類型三】 構造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點A作AD⊥BC于點D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點A作AD⊥BC于點D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結:解答此類題目的關鍵是根據(jù)題意構造直角三角形,然后利用所學的三角函數(shù)的關系進行解答.

  • 北師大初中九年級數(shù)學下冊圓內接正多邊形教案

    北師大初中九年級數(shù)學下冊圓內接正多邊形教案

    解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

  • 北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    北師大初中九年級數(shù)學下冊直線和圓的位置關系及切線的性質教案

    解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

  • 北師大初中數(shù)學七年級上冊多邊形和圓的初步認識說課稿

    北師大初中數(shù)學七年級上冊多邊形和圓的初步認識說課稿

    將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數(shù)嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴交流設計意圖:通過引導學生根據(jù)圓心角與圓心角的比例確定扇形面積與整圓的面積關系為后面學習扇形面積公式做鋪墊,體現(xiàn)知識的延續(xù)性。(六)、鞏固練習.如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結學完這節(jié)課你有哪些收獲?設計意圖:通過小節(jié)讓學生對所學知識進行梳理,使所學知識能合理地納入自身的知識結構。(八) 布置作業(yè):中等學生:P125. 1優(yōu)等生: P125. 2,3我針對學生素質的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有余力的學生有所提高,從而達到拔尖和“減負”的目的。

  • 北師大初中數(shù)學七年級上冊有理數(shù)的加減混合運算說課稿

    北師大初中數(shù)學七年級上冊有理數(shù)的加減混合運算說課稿

    5、總結學生解題過程中存在的問題,并指導并糾正、分析根本原因。6、通過演示法給學生演示完整、詳細和規(guī)范的解題過程。7、總結有理數(shù)的運算順序和方法。先讓學生自己總結運算順序,培養(yǎng)學生自己思考的能力,然后教師進行糾正。等這個過程結束之后,再給出完整的運算順序和方法。8、出示練習題,鞏固所學知識,教師及時指正。9、最后布置課后作業(yè)題。四、教學評價本節(jié)課我注重體現(xiàn)“以教師為主導、學生為主體、以學生發(fā)展為本的教學思想”。1、通過具體的題目引入,讓學生先以自己的知識體系解決問題,在這過程中發(fā)現(xiàn)問題、歸納總結原因,并予以解決。一方面復習前面所學的基本運算,另一方面完善學生的知識體系。2、培養(yǎng)學生自主學習與探究的能力、分析與解決問題的能力。

  • 北師大初中數(shù)學七年級上冊有理數(shù)的混合運算說課稿

    北師大初中數(shù)學七年級上冊有理數(shù)的混合運算說課稿

    一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務教育課程標準實驗教材第2章第6節(jié)第一課時的內容。它是學生在已經掌握有理數(shù)加法、減法、乘法、除法、乘方以后進行學習的。它是建立在有理數(shù)的有關概念和各種運算的意義及法則的基礎上進行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學生運算能力和數(shù)學學習能力的培養(yǎng),有著十分重要的意義,同時也是初中數(shù)學運算的重要內容之一,是后續(xù)學習的基礎。(二)教學目標的確立:參照義務教育階段《數(shù)學課程標準》的要求,確定本節(jié)課的教學目標如下:1、知識技能目標:(1)掌握有理數(shù)的混合運算法則及運算順序。(2)熟練的進行有理數(shù)的混合運算。2、能力目標:培養(yǎng)學生的觀察能力和運算能力。3、情感與態(tài)度目標:(1)培養(yǎng)學生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,并養(yǎng)成驗算的良好的學習習慣。

  • 北師大初中數(shù)學七年級上冊整式及其加減說課稿

    北師大初中數(shù)學七年級上冊整式及其加減說課稿

    ②.通過“由文字語言到符號語言”再“由符號語言到文字語言”讓學生從正反兩方面雙向建構.突破難點策略:①.分三步分散難點:引入時大量的實際情景,讓學生體會到代數(shù)式存在的普遍性;讓學生給自己構造的一些簡單代數(shù)式賦予實際意義,進一步體會代數(shù)式的模型思想;通過“主題研究”等環(huán)節(jié)進一步提高解決實際問題的能力.②.適時安排小組合作與交流,使學生在傾聽、質疑、說服、推廣的過程中得到“同化”和“順應”,直至豁然開朗,突破思維的瓶頸.2.生成預設為生成服務,本案編代數(shù)式、主題研究等環(huán)節(jié)的設計為學生精彩的生成提供了很好的平臺,在實際教學過程中,教師要注重生成信息的捕捉,善于發(fā)現(xiàn)學生思維的亮點,及時進行引導和激勵,并根據(jù)具體教學對象,適當調整教與學,使教學過程真正成為生成教育智慧和增強實踐能力的過程.讓預設與生成齊飛.

  • 北師大初中數(shù)學七年級上冊統(tǒng)計圖的選擇說課稿

    北師大初中數(shù)學七年級上冊統(tǒng)計圖的選擇說課稿

    四、教學過程分析為有序、有效地進行教學,本節(jié)課我主要安排了以下教學環(huán)節(jié):(一)復習導入主要復習一下三種統(tǒng)計圖,為接下來介紹三種統(tǒng)計圖的特點及根據(jù)實際問題選取適當?shù)慕y(tǒng)計圖做好知識準備。(二)問題探究選取課本上“小華對1992~2002年同學家中有無電視機及近一年來同學在家看電視的情況”的3個調查項目,進而設計3個探究問題從而加深學生對每一種統(tǒng)計圖的進一步認識,至此用自己的語言總結出每一種統(tǒng)計圖的特點。(三)實踐練兵這一環(huán)節(jié)通過2個實際問題的設計,通過學生對問題的分析、討論,使學生認識到適當選取統(tǒng)計圖有助于幫助人們去更快速、更準確地獲取信息。(四)課堂小結總結這一節(jié)課所學的重點知識,這部分主要是讓學生自己去總結,看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進一步鞏固本節(jié)課所學的知識,達到教學效果。以上就是我對這節(jié)課的見解,不足之處還望批評和指正。

  • 北師大初中數(shù)學七年級上冊直線、射線、線段說課稿

    北師大初中數(shù)學七年級上冊直線、射線、線段說課稿

    (六)當堂達標(練習二、三 10分鐘)練習二讓學生口答,通過練習,鞏固學生對直線、射線、線段表示方法的掌握。練習三讓學生去黑板板演,教師檢驗對錯并重點強調幾何語言的表述。文字語言和圖形語言之間的轉化是難點,著重練習文字語言向圖形語言的轉化,提高幾何語言的理解與運用能力。當堂達標是檢查學習效果、鞏固知識、提高能力的重要手段。通過練習,學生會體驗到收獲和成功,發(fā)現(xiàn)存在的不足,教師也及時獲得信息反饋,以便課下查漏補缺。 (七)小結(3分鐘)教師提問“這節(jié)課我們學了哪些知識?”請學生回答,教師做適當補充。課堂小結對一節(jié)課起著“畫龍點晴”的作用,它能體現(xiàn)一節(jié)課所講的知識和數(shù)學思想。因此,在小結時,教師引導學生概括本節(jié)內容的重點。

  • 北師大初中數(shù)學七年級上冊截一個幾何體說課稿

    北師大初中數(shù)學七年級上冊截一個幾何體說課稿

    接著引導學生進一步思考截面可不可以是特殊的三角形:等腰三角形和等邊三角形。教師用課件演示切截過程,展示切截位置的變化引起截面形狀的變化,圖形特殊化。使學生的思考經歷由一般到特殊的過程。2.截面是其他形狀學生先猜想正方體的截面還有可能是什么形狀,再利用實驗操作型課件對正方體進行無限次的切截,讓學生在無限次切截的過程中體會截面產生和變化的整個過程,發(fā)現(xiàn)截面產生和變化的規(guī)律。學生從切截活動中發(fā)現(xiàn)猜想時沒有想到的截面圖形,體會到探索的樂趣。教師再引導學生歸納正方體截面邊數(shù)的規(guī)律。學生的認知得到升華。接著引導學生歸納截面形狀中的特殊四邊形。二.圓柱體和圓錐體的截面學生先猜想圓柱體的截面可能是什么形狀,教師利用實驗操作型課件對圓柱體進行無限次的切截,學生觀察截面形狀。

  • 北師大初中數(shù)學七年級上冊用計算器計算說課稿

    北師大初中數(shù)學七年級上冊用計算器計算說課稿

    一是先用計算器算出下面各題的積,再找一找有什么規(guī)律。目的是活躍氣氛,激發(fā)學生探索數(shù)學規(guī)律的興趣,為下面的數(shù)學探險作鋪墊。二是數(shù)學探險。在這個步驟中,我先出示8個1乘8個1,學生用計算器計算的答案肯定不一樣,因為學生帶來的計算器所能顯示的數(shù)位不一樣,而且這些計算器所能顯示的數(shù)位都不夠用,也就是這道題目計算器不能解決。這時我提問:“你覺得問題出在哪兒?是我們錯了,還是計算器錯了?你能想辦法解決嗎?請四人小組討論一下解決方案?!边@樣安排的目的是引發(fā)矛盾沖突,激發(fā)他們解決問題的需要和欲望。在學生找不到更好的解決方法時,引導學生向書本請教,完成課本第101頁想想做做的第四題。讓學生利用計算器算出前5題的得數(shù),引導學生通過觀察、比較、歸納、類比發(fā)現(xiàn)這些算式的規(guī)律,填寫第6個算式,發(fā)展學生的合情推理能力,同時也讓學生領略了數(shù)學的神奇。

上一頁2345678910111213下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。