
761年8月,成都平原風(fēng)雨成災(zāi)。草堂被吹破了,草堂前的一棵200年的楠樹也被拔倒了?!糐P3就在詩人政治上受到冷遇,又加風(fēng)雨成災(zāi)的情況下,杜甫寫了《茅屋為秋風(fēng)所破歌》?!糐P《賣炭翁》:本詩選自《白居易集》卷四(中華書局1979年版)。本詩是白居易《新樂府》組詩中的第三十二首,自注云:“《賣炭翁》,苦宮市也?!卑拙右讓懽鳌缎聵犯肥窃谠停ㄌ茟椬谀晏?,806—820)初年,這正是宮市為害最深的時(shí)候。他對宮市十分的了解,又對人民有深切的同情,所以才能寫出這首感人至深的《賣炭翁》來。皇宮所需的物品,本來由官吏采買。中唐時(shí)期,宦官專權(quán),橫行無忌,連這種采購權(quán)也抓了過去,常有數(shù)十百人分布在長安東西兩市及熱鬧街坊,以低價(jià)強(qiáng)購貨物,甚至不給分文,還勒索“進(jìn)奉”的“門戶錢”及“腳價(jià)錢”。名為“宮市”,實(shí)際是一種公開的掠奪。詩人有感于此,寫下本詩。

【新課導(dǎo)入】唐代大詩人杜甫曾經(jīng)說過:“讀書破萬卷,下筆如有神?!毖韵轮?,多讀書對寫作大有好處。書讀得越多,寫起文章來就越得心應(yīng)手。其實(shí),讀書還能拓展視野,發(fā)展思維能力,豐富我們的精神世界,提升我們的語文素養(yǎng)……讀書的好處不勝枚舉,但如果你只是走馬觀花、囫圇吞棗地讀書,讀完后沒有任何印象,那書就白讀了。所以每讀完一本書,我們都要寫下自己讀書的感悟,才能讓每一本書真正發(fā)揮作用,成為我們成長旅途中的路燈?!緦懽饕蟆?.選定課文或名著后,再仔細(xì)讀一讀相應(yīng)的片段,能從多方面的閱讀感受中選擇一點(diǎn)來寫。2.能概括敘述材料內(nèi)容,寫出自己獨(dú)特、新穎的感受,要聯(lián)系個(gè)人的生活經(jīng)驗(yàn)來談,避免脫離原文和生活實(shí)際任意發(fā)揮。3.回憶你看過的電影或電視劇,分析劇中人物或情節(jié)打動(dòng)你的原因,可聯(lián)系自己的生活經(jīng)驗(yàn)來談?!炯挤c(diǎn)撥】

【再讀課文,梳理結(jié)構(gòu)】1. 文章標(biāo)題為“北冥有魚”,后來怎么又寫鳥了?鳥是由魚變化而來的。鯤的體形有幾千里,變成鳥后,鳥的脊背不知有幾千里長。說明莊子想象力豐富。2. 鳥為什么要遷徙到南冥?南冥是天人的大池,是鳥心目中的理想境地,是要追求一種精神的自由。3. 鯤鵬由北海飛到南海,需要借助什么條件?“海運(yùn)則將徙于南冥”“摶扶搖而上者九萬里,去以六月息者也”4. 句子賞析:“鵬之徙于南冥也,水擊三千里,摶扶搖而上者九萬里?!痹~句運(yùn)用豐富的想象,奇特的夸張,描寫了鯤鵬振翼拍水,盤旋飛向九萬里高空的形象,這一形象能激發(fā)人的豪情壯志,具有強(qiáng)烈的藝術(shù)感染力?!皳簟薄皳弧钡茸謧魃瘛⑸鷦?dòng),讓人產(chǎn)生豐富的想象和聯(lián)想。

【目標(biāo)導(dǎo)航】1.通過多個(gè)故事的學(xué)習(xí),能夠選擇有波折的典型材料,并學(xué)會畫故事情節(jié)圖;2.交流閱讀故事的心得體會,掌握創(chuàng)寫故事的基礎(chǔ)知識,激發(fā)學(xué)生的聯(lián)想與想象,并合理的運(yùn)用到寫作中;3.通過多個(gè)故事的訓(xùn)練,培養(yǎng)寫作興趣,能夠多問“為什么”“怎么樣”,寫出比較精彩的故事。在創(chuàng)編故事中學(xué)會尊重他人的愛,學(xué)會關(guān)愛他人。一、以小組為單位,圍繞一個(gè)話題,同學(xué)自由發(fā)揮想象,開展故事接龍活動(dòng)。二、在你的身邊或社會上,每天都在發(fā)生著各種各樣有趣的或有意義的事。以某一件事為素材,展開合理的想象,自擬題目,寫一篇故事。不少于600字。三、我們熟悉的各種事物,都可能引發(fā)故事,比如眼睛、頭發(fā)、嘴巴,比如書包、校服、手機(jī),又比如軍訓(xùn)、旅游、社會實(shí)踐活動(dòng),等等。這些物或事一定有不少值得挖掘的地方,有不少出人意外的富有戲劇性的故事。以《 的故事》為題,寫一篇作文。不少于600字。

【目標(biāo)導(dǎo)航】1.培養(yǎng)留心觀察、勤于考證的意識,能初步認(rèn)識到“行萬里路”是增長人生見識和鍛煉獨(dú)立生活能力的必要途徑。2.抓住特點(diǎn)描寫景物,重點(diǎn)突出,詳略得當(dāng)。3.在寫作活動(dòng)中了解祖國大好河山,增強(qiáng)熱愛家鄉(xiāng)和祖國的情感,學(xué)寫文情并茂的游記?!菊n時(shí)安排】2課時(shí)?!菊n時(shí)分配】建議第一課時(shí)進(jìn)行作文指導(dǎo)與寫作,第二課時(shí)進(jìn)行批改、評講、修改。了解作文文題,熟悉作文要求,搜集相關(guān)素材,為習(xí)作做準(zhǔn)備。1.游記常常要對某處景物做定點(diǎn)觀察,以寫出景物的特點(diǎn)。選擇你游覽過的一個(gè)景點(diǎn),圍繞其中的一處風(fēng)景,寫一個(gè)片段。200字左右。2.我們應(yīng)該都有過出游的經(jīng)歷。旅途中,我們不僅觀賞自然風(fēng)光,了解民風(fēng)民俗,同時(shí)也會有許多新奇的感受,產(chǎn)生很多思考和遐想。自擬題目,寫一篇游記。不少于600字。3.你一定看過一些展覽,參觀過一些紀(jì)念館或博物館,請選擇一次這樣的經(jīng)歷,以《參觀 》為題,寫一篇參觀記。不少于600字。

1、通過同位之間互說座位位置,檢測知識目標(biāo)2、3的達(dá)成效果。2、通過導(dǎo)學(xué)案上的探究一,檢測知識目標(biāo)2、3的達(dá)成效果。 3、通過探究二,檢測知識目標(biāo)1、3的達(dá)成效果。 4、通過課堂反饋,檢測總體教學(xué)目標(biāo)的達(dá)成效果。本節(jié)課遵循分層施教的原則,以適應(yīng)不同學(xué)生的發(fā)展與提高,針對學(xué)生回答問題本著多鼓勵(lì)、少批評的原則,具體從以下幾方面進(jìn)行評價(jià):1、通過學(xué)生獨(dú)立思考、參與小組交流和班級集體展示,教師課堂觀察學(xué)生的表現(xiàn),了解學(xué)生對知識的理解和掌握情況。教師進(jìn)行適時(shí)的反應(yīng)評價(jià),同時(shí)促進(jìn)學(xué)生的自評與互評。2、通過設(shè)計(jì)課堂互說座位、探究一、二及達(dá)標(biāo)檢測題,檢測學(xué)習(xí)目標(biāo)達(dá)成情況,同時(shí)有利于學(xué)生完成對自己的評價(jià)。3.通過課后作業(yè),了解學(xué)生對本課時(shí)知識的掌握情況,同時(shí)又能檢測學(xué)生分析解決問題的方法和思路,完成教學(xué)反饋評價(jià)。

如圖,課外數(shù)學(xué)小組要測量小山坡上塔的高度DE,DE所在直線與水平線AN垂直.他們在A處測得塔尖D的仰角為45°,再沿著射線AN方向前進(jìn)50米到達(dá)B處,此時(shí)測得塔尖D的仰角∠DBN=61.4°,小山坡坡頂E的仰角∠EBN=25.6°.現(xiàn)在請你幫助課外活動(dòng)小組算一算塔高DE大約是多少米(結(jié)果精確到個(gè)位).解析:根據(jù)銳角三角函數(shù)關(guān)系表示出BF的長,進(jìn)而求出EF的長,得出答案.解:延長DE交AB延長線于點(diǎn)F,則∠DFA=90°.∵∠A=45°,∴AF=DF.設(shè)EF=x,∵tan25.6°=EFBF≈0.5,∴BF=2x,則DF=AF=50+2x,故tan61.4°=DFBF=50+2x2x=1.8,解得x≈31.故DE=DF-EF=50+31×2-31=81(米).所以,塔高DE大約是81米.方法總結(jié):解決此類問題要了解角之間的關(guān)系,找到與已知和未知相關(guān)聯(lián)的直角三角形,當(dāng)圖形中沒有直角三角形時(shí),要通過作高或垂線構(gòu)造直角三角形.

(2)問銷售該商品第幾天時(shí),當(dāng)天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進(jìn)行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個(gè)解析式,結(jié)合二次函數(shù)與一次函數(shù)的性質(zhì)分別求得最值,然后兩種情況下取最大的即可.解:(1)當(dāng)1≤x<50時(shí),y=(200-2x)(x+40-30)=-2x2+180x+2000;當(dāng)50≤x≤90時(shí),y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當(dāng)1≤x<50時(shí),y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當(dāng)x=45時(shí),y最大=-2×452+180×45+2000=6050;當(dāng)50≤x≤90時(shí),y=-120x+12000,y隨x的增大而減小,當(dāng)x=50時(shí),y最大=6000.綜上所述,銷售該商品第45天時(shí),當(dāng)天銷售利潤最大,最大利潤是6050元.方法總結(jié):本題考查了二次函數(shù)的應(yīng)用,讀懂表格信息、理解利潤的計(jì)算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關(guān)鍵.

如圖所示,要用長20m的鐵欄桿,圍成一個(gè)一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時(shí),才能使y的值最大?二、合作探究探究點(diǎn)一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結(jié):求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練” 第1題探究點(diǎn)二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質(zhì)得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結(jié):解決本題要掌握三角形的內(nèi)心的性質(zhì),以及圓周角定理.

方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升” 第7題【類型三】 構(gòu)造直角三角形解決面積問題在△ABC中,∠B=45°,AB=2,∠A=105°,求△ABC的面積.解析:過點(diǎn)A作AD⊥BC于點(diǎn)D,根據(jù)勾股定理求出BD、AD的長,再根據(jù)解直角三角形求出CD的長,最后根據(jù)三角形的面積公式解答即可.解:過點(diǎn)A作AD⊥BC于點(diǎn)D,∵∠B=45°,∴∠BAD=45°,∴AD=BD=22AB=22×2=1.∵∠A=105°,∴∠CAD=105°-45°=60°,∴∠C=30°,∴CD=ADtan30°=133=3,∴S△ABC=12(CD+BD)·AD=12×(3+1)×1=3+12. 方法總結(jié):解答此類題目的關(guān)鍵是根據(jù)題意構(gòu)造直角三角形,然后利用所學(xué)的三角函數(shù)的關(guān)系進(jìn)行解答.

解析:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱,根據(jù)點(diǎn)C在對稱軸左側(cè),且CD=8,求出點(diǎn)C的橫坐標(biāo)和縱坐標(biāo),再根據(jù)點(diǎn)B的坐標(biāo)為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點(diǎn)A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點(diǎn)C與點(diǎn)D關(guān)于x=-3對稱.∵點(diǎn)C在對稱軸左側(cè),且CD=8,∴點(diǎn)C的橫坐標(biāo)為-7,∴點(diǎn)C的縱坐標(biāo)為(-7)2+6×(-7)+5=12.∵點(diǎn)B的坐標(biāo)為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結(jié):此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質(zhì),注意掌握數(shù)形結(jié)合思想與方程思想的應(yīng)用.

然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達(dá)C處,此時(shí),測得A點(diǎn)的俯角是15°.已知小麗的步行速度是18米/分,圖中點(diǎn)A、B、E、D、C在同一平面內(nèi),且點(diǎn)D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點(diǎn)F,根據(jù)速度乘以時(shí)間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點(diǎn)F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關(guān)鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

解析:點(diǎn)E是BC︵的中點(diǎn),根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應(yīng)邊成比例得結(jié)論.證明:∵點(diǎn)E是BC︵的中點(diǎn),即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結(jié):圓周角定理的推論是和角有關(guān)系的定理,所以在圓中,解決相似三角形的問題常??紤]此定理.三、板書設(shè)計(jì)圓周角和圓心角的關(guān)系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點(diǎn)是圓周角與圓心角的關(guān)系,難點(diǎn)是應(yīng)用所學(xué)知識靈活解題.在本節(jié)課的教學(xué)中,學(xué)生對圓周角的概念和“同弧所對的圓周角相等”這一性質(zhì)較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關(guān)系理解起來則相對困難,因此在教學(xué)過程中要著重引導(dǎo)學(xué)生對這一知識的探索與理解.還有些學(xué)生在應(yīng)用知識解決問題的過程中往往會忽略同弧的問題,在教學(xué)過程中要對此予以足夠的強(qiáng)調(diào),借助多媒體加以突出.

解析:(1)由切線的性質(zhì)得AB⊥BF,因?yàn)镃D⊥AB,所以CD∥BF,由平行線的性質(zhì)得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因?yàn)椤螦BF=90°,然后運(yùn)用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結(jié):運(yùn)用切線的性質(zhì)來進(jìn)行計(jì)算或論證,常通過作輔助線連接圓心和切點(diǎn),利用垂直構(gòu)造直角三角形解決有關(guān)問題.

教讀句子:What’s your favourite food?(2)兩人小組用該句型編一小段對話進(jìn)行操練,同時(shí)也可引導(dǎo)學(xué)生用該句型編一小段對話進(jìn)行操練,同時(shí)也可引導(dǎo)學(xué)生用fruit and drink替換food.(3)聽錄音,讓學(xué)生跟讀對話。學(xué)生可用不同的食物單詞做替換回答問句。Pair work讓學(xué)生拿出已發(fā)的調(diào)查表格,用所學(xué)句型對不同學(xué)生進(jìn)行調(diào)查,并要求對方陳述原因。先組內(nèi)匯報(bào),再向全班匯報(bào),匯報(bào)時(shí)要說出:I like …… Mike likes…… We like……教師看哪一小組表現(xiàn)好,適當(dāng)給予獎(jiǎng)勵(lì)。Task time請學(xué)生拿出第一課時(shí)所做的謎語卡片,向全班展示。鞏固延伸:做配套練習(xí),讀對話給家長聽,熟記單詞第六課時(shí)教學(xué)設(shè)計(jì)教學(xué)目標(biāo)與要求:1、能夠聽、說、讀、寫本課時(shí)四會句子:What’s your favourite fruit?I like apples. They’re sweet. I don’t like grapes. They’re sour.并能在情景中正確運(yùn)用。能夠在Group work中使用該句型完成調(diào)查。2、能夠理解情景對話的含義并完成句子填空。3、能夠理解Pronunciation中字母組合的發(fā)音規(guī)則,讀出相關(guān)的單詞。

師:同學(xué)們,在四年級的時(shí)候,我們已經(jīng)了解了圖形的密鋪,請你說一說,什么是圖形的密鋪?(沒有重疊、沒有空隙地鋪在平面上,就是密鋪。)師:圖形的密鋪又可以叫做鑲嵌,以上四個(gè)圖片,都是由哪些基本圖形密鋪(鑲嵌)而成的呢?(請學(xué)生邊指邊說。)師:還有哪些圖形也可以鑲嵌?(學(xué)生可能回答:三角形,平行四邊形,梯形,菱形,正六邊形,……)師:今天就請你發(fā)揮一下想象力,設(shè)計(jì)一些與眾不同的鑲嵌圖形。[設(shè)計(jì)意圖說明:學(xué)生在四年級已經(jīng)初步了解了圖形的密鋪(鑲嵌)現(xiàn)象,四幅圖片是四年級下冊教材《三角形》單元中《密鋪》內(nèi)容中的原圖。本單元在此基礎(chǔ)上,通過數(shù)學(xué)游戲拓展鑲嵌圖形的范圍,讓學(xué)生用圖形變換設(shè)計(jì)鑲嵌圖案,進(jìn)一步感受圖形變換帶來的美感以及在生活中的應(yīng)用。]二、新授探究一:利用平移變換設(shè)計(jì)鑲嵌圖形

教學(xué)要求1. 通過生活中的事例,學(xué)會解決“找次品”這類問題的思想方法。2. 體會解決問題策略的多樣性及運(yùn)用優(yōu)化的方法解決問題的有效性。3. 感受到數(shù)學(xué)在日常生活中的廣泛應(yīng)用,培養(yǎng)應(yīng)用意識和解決實(shí)際問題的能力。學(xué)情分析有化是一種重要的數(shù)學(xué)思想方法,可有效地分析和解決問題。本單元主要以“找次品”這一操作活動(dòng)為載體,讓學(xué)生通過觀察、猜測、推理的方法感受解決問題策略的多樣性,在此基礎(chǔ)上,通過歸納、推理的方法體會運(yùn)用優(yōu)化策略解決問題的有效性,感受數(shù)學(xué)的魅力。這些內(nèi)容對五年級的學(xué)生來說有一定的難度,所以應(yīng)讓學(xué)生在具體操作和試驗(yàn)中感悟、體會,由此使學(xué)生養(yǎng)成勤于思考、勇于探索的精神。教學(xué)重點(diǎn)學(xué)會解決“找次品”這類問題的方法。

(3)按每千克涂料粉刷3.5 m2計(jì)算,可求出共需要涂料:1600÷3.5≈460(千克);(4)根據(jù)涂料的型號及費(fèi)用,選擇合適的涂料。師:選擇涂料時(shí),要考慮很多因素,如價(jià)格、耐用期、消費(fèi)心理、環(huán)保等,要怎么選擇呢?學(xué)生可以把幾種涂料進(jìn)行對比,一起討論決定,同時(shí)學(xué)會在交流中理解接納別人較好的建議:如:A型,優(yōu)點(diǎn):價(jià)格便宜,需要19桶,總共才5700元;缺點(diǎn):耐用期太短,兩年后又要重新粉刷;B-1型和B-2型,雖然桶裝量不同,但價(jià)格和耐用期都處在中游水平;C型和D型,優(yōu)點(diǎn):耐用期長,最劃算;缺點(diǎn):價(jià)格太高,不符合人們的消費(fèi)心理,也不可能持續(xù)那么長時(shí)間,至少5年就要更換一下樣子。綜合以上價(jià)格、耐用期、消費(fèi)心理,選擇B-1或B-2型比較劃算。而這兩種比較來看,B-2型更便宜一些,所以,最后確立用B-2型涂料。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。