
(5)高度不同,對平拋運(yùn)動距離有何影響,是否因?yàn)楦叨葴p小后下落時間減小,所以要增大速度才能達(dá)到相同的距離?(教學(xué)實(shí)踐證明,這種想法在學(xué)生比較多見。已經(jīng)不自覺的沿用了自由落體運(yùn)動的規(guī)律,又隱隱有運(yùn)動等時性的痕跡。應(yīng)引導(dǎo)學(xué)生這一結(jié)果還需實(shí)驗(yàn)驗(yàn)證。)教師的引導(dǎo):其實(shí),我們所提出的看法都跟平拋運(yùn)動的規(guī)律有關(guān)系。那么平拋運(yùn)動究竟有怎樣的規(guī)律呢?以前學(xué)過的直線運(yùn)動知識還能用于今天的內(nèi)容嗎?由此逐步使學(xué)生意識到分析平拋運(yùn)動須采用運(yùn)動合成與分解這一方法。三、實(shí)驗(yàn)驗(yàn)證自主探究(15分鐘) 物理是實(shí)驗(yàn)科學(xué),多媒體教學(xué)不能代替實(shí)驗(yàn)。本教學(xué)設(shè)計(jì)的第三個環(huán)節(jié)是實(shí)驗(yàn)驗(yàn)證,鼓勵學(xué)生自主探究。引導(dǎo)學(xué)生根據(jù)自己的猜想(實(shí)驗(yàn)?zāi)康模┰O(shè)計(jì)實(shí)驗(yàn)進(jìn)行驗(yàn)證。(1)介紹手持式平拋豎落儀,引導(dǎo)并小結(jié)實(shí)驗(yàn)要領(lǐng):聽兩小球下落聲音判斷其下落時間。體會合運(yùn)動和分運(yùn)動是等時的。

1、舉例:2、結(jié)論:(1)物體的運(yùn)動軌跡是曲線的運(yùn)動叫曲線運(yùn)動。(2)曲線運(yùn)動中速度方向是時刻改變的。(二)、曲線運(yùn)動方向:1、質(zhì)點(diǎn)在某一點(diǎn)(或某一時刻)的速度的方向是在曲線的這一點(diǎn)的切線方向。2、曲線運(yùn)動中速度方向是時刻改變的,因此曲線運(yùn)動是變速運(yùn)動。(三)、曲線運(yùn)動條件:1、演示實(shí)驗(yàn):2、結(jié)論:當(dāng)物體所受的合力的方向跟它的速度方向不在同一直線時,物體就做曲線運(yùn)動。七、課堂小結(jié):1、運(yùn)動軌跡是曲線的運(yùn)動叫曲線運(yùn)動。2、曲線運(yùn)動中速度的方向是時刻改變的,質(zhì)點(diǎn)在某一點(diǎn)的瞬時速度的方向在曲線的這一點(diǎn)的切線上。3、當(dāng)合外力F的方向與它的速度方向有一夾角a時,物體做曲線運(yùn)動。八、鞏固訓(xùn)練:1、關(guān)于曲線運(yùn)動,下列說法正確的是()。A:曲線運(yùn)動一定是變速運(yùn)動;B:曲線運(yùn)動速度的方向不斷的變化,但速度的大小可以不變;

學(xué)生中存在這樣的問題:既然宇宙間的一切物體都是相互吸引的,那么為什么沒有吸引到一起?為了解決這個問題,安排了例題2例2、兩物體質(zhì)量都是1kg,相距1m,它們間的萬有引力是多少?通過本題,讓學(xué)生認(rèn)識到一般物體間的引力極小,不用考慮。那么,質(zhì)量很大的天體為什么沒被吸引到一塊?從而引出下節(jié)課題。4.課堂小結(jié):本節(jié)課,從天體運(yùn)動出發(fā),通過推理證明,形成理性認(rèn)識,再結(jié)合例題習(xí)題使學(xué)生的理性認(rèn)識再反饋到具體事實(shí)。形成實(shí)踐-理論-實(shí)踐的認(rèn)知循環(huán),順應(yīng)了認(rèn)知規(guī)律.。本共設(shè)計(jì)了很多問,能讓學(xué)生想的盡量讓學(xué)生想、能學(xué)生說的盡量讓學(xué)生說、能讓學(xué)生做的盡量讓學(xué)生做,全面發(fā)展學(xué)生的各方面能力。再通過作業(yè)和探究性課題使學(xué)生的思維活動在時空上得以延續(xù)。5.布置作業(yè):布置作業(yè)時刻意安排引入:萬有引力、重力、向心力、三者的聯(lián)系,通過引導(dǎo)學(xué)生對比結(jié)果,從中發(fā)現(xiàn)問題:萬有引力與重力向心力的關(guān)系與區(qū)別,為下節(jié)知識的難點(diǎn)突破作好了鋪墊。

d.某物體沿直線向東運(yùn)動,原來的速度是5m/s,2s后速度減小到3m/s,求2s內(nèi)物體速度變化。④如何探究物體作勻速圓周運(yùn)動時,在Δt時間內(nèi)的速度變化?分析:有了同一直線上速度變化的鋪墊后,討論物體做勻速圓周運(yùn)動速度的變化就比較自然了,為了給向心加速度方向的學(xué)習(xí)打好基礎(chǔ),可以通過小組協(xié)作,進(jìn)一步完成下列思考題,使同學(xué)們認(rèn)識到:時間間隔起短,速度變化的方向起接近半徑方向。(多媒體屏幕投影)a.物體沿半徑為1m的軌道做勻速圓周運(yùn)動,線速度大小為,求1s內(nèi)物體速度變化并畫出1s內(nèi)速度變化的示意圖。b.分別求出上題中物體在0.5s、0.25s內(nèi)速度變化并畫出相應(yīng)的示意圖。由于沒有辦法直接利用實(shí)驗(yàn)來驗(yàn)證速度變化的方向,所以,我們采用提供思考題的方法,引導(dǎo)同學(xué)在合作學(xué)習(xí)、自主探究中完成。有了速度變化的研究為鋪墊,加速度的方向問題就迎刃而解了。

[小結(jié)]師:下面同學(xué)們概括總結(jié)本節(jié)所學(xué)的內(nèi)容。請一個同學(xué)到黑板上總結(jié),其他同學(xué)在筆記本上總結(jié),然后請同學(xué)評價黑板上的小結(jié)內(nèi)容。 (學(xué)生認(rèn)真總結(jié)概括本節(jié)內(nèi)容,并把自己這節(jié)課的體會寫下來、比較黑板上的小結(jié)和自己的小結(jié),看誰的更好,好在什么地方。) 生:本節(jié)課我們通過伽利略理想斜面實(shí)驗(yàn),分析得出了能量以及動能和勢能的概念,從能量的相互轉(zhuǎn)化角度認(rèn)識到,在動能和勢能的相互轉(zhuǎn)化過程中,能的總量保持不變,即能量是守恒的。通過這節(jié)課的學(xué)習(xí),使我們建立起了守恒的思想。 點(diǎn)評:總結(jié)課堂內(nèi)容,培養(yǎng)學(xué)生概括總結(jié)能力。 教師要放開,讓學(xué)生自己總結(jié)所學(xué)內(nèi)容,允許內(nèi)容的順序不同,從而構(gòu)建他們自己的知識框架。[布置作業(yè)]課后討論 P3“問題與練習(xí)”中的問題。[課外訓(xùn)練]以豎直上拋的小球?yàn)槔f明小球的勢能和動能的轉(zhuǎn)化情況。在這個例子中是否存在著能的總量保持不變?

了解了第一宇宙速度及其意義之后,繼續(xù)提出問題,讓學(xué)生思考:如果衛(wèi)星的發(fā)射速度大于第一宇宙速度7.9km/s ,會出現(xiàn)什么情況呢?先讓學(xué)生們大膽猜想,然后再向?qū)W生們介紹 衛(wèi)星發(fā)射速度大于第一宇宙速度后的幾種可能情況,引出第二宇宙速度和第三宇宙速度,讓學(xué)生對第二、第三宇宙速度及其意義做定性了解。并通過演示Flash課件,幫助學(xué)生理解、加深學(xué)生印象。在學(xué)生對人造衛(wèi)星的原理及發(fā)射衛(wèi)星的速度條件有了初步了解后,接下來引導(dǎo)學(xué)生對衛(wèi)星的運(yùn)動規(guī)律作進(jìn)一步的探索。實(shí)際上衛(wèi)星并不是沿地表水平發(fā)射的,而是用火箭多次加速送到一定的高度的軌道后,再沿以地心為圓心的圓周的切線運(yùn)行的。讓學(xué)生繼續(xù)深入思考:衛(wèi)星在不同高度繞地球運(yùn)行時的速度怎么求呢?將衛(wèi)星送入低軌道和高軌道所需的速度都一樣么?如果把不同軌道上的衛(wèi)星繞地球的運(yùn)動都看成是勻速圓周運(yùn)動,引導(dǎo)學(xué)生利用已學(xué)的萬有引力和圓周運(yùn)動的相關(guān)知識,探究衛(wèi)星繞地球的運(yùn)行規(guī)律。

設(shè)計(jì)意圖:通過設(shè)疑、討論及學(xué)生的親身體驗(yàn)與教師的引導(dǎo),得到描述圓周運(yùn)動快慢的兩個物理量,也就成功的打破了學(xué)生在認(rèn)識上的思維障礙,突破了物理概念教學(xué)的難點(diǎn)。在解決線速度和角速度的問題之后,我將引領(lǐng)學(xué)生學(xué)習(xí)勻速圓周運(yùn)動的概念以及勻速圓周運(yùn)動中線速度、角速度的特點(diǎn)。并引出勻速圓周運(yùn)動中周期、轉(zhuǎn)速的知識。為了加深學(xué)生對線速度、角速度與半徑關(guān)系的認(rèn)識,我設(shè)計(jì)了第三個學(xué)生體驗(yàn)活動:四名學(xué)生以我為圓心做圓周運(yùn)動,四名學(xué)生始終并列,這時里圈同學(xué)走動不急不慢,而外圈同學(xué)則要小跑。通過學(xué)生的活動,不難發(fā)現(xiàn)在角速度相同的情況下,半徑越大的線速度也越大。定性的得到了線速度、角速度與半徑的關(guān)系。接下來讓學(xué)生利用所學(xué)知識推導(dǎo)線速度、角速度與半徑的關(guān)系。設(shè)計(jì)意圖:這樣就通過設(shè)疑、學(xué)生猜想、體驗(yàn)、推導(dǎo)的方式得到了結(jié)論,突破了本節(jié)課的難點(diǎn)即線速度、角速度與半徑的關(guān)系。

(四)、彈性勢能(據(jù)課時情況,可以讓學(xué)生自學(xué))生活中還有一些物體既沒有運(yùn)動也沒有很大的高度卻同樣“儲存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會對箭支做功改變它的動能,松弛的弓有這樣的本領(lǐng)嗎?同樣是弓前者具有能量而后者沒有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復(fù)原狀的過程會對外做功,但是拉斷的弓還能有做功的本領(lǐng)嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢能。2.彈性勢能的大小與哪些因素有關(guān)呢?3、勢能由相互作用的物體的相對位置決定的能量。重力勢能:由地球和物體間相對位置決定。彈性勢能:由發(fā)生形變的各部分的相對位置決定。(五).反饋練習(xí)1. 物體在運(yùn)動過程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢能一定增加50JC.物體的重力勢能一定減少50JD.重力做功為-50J

本章通過學(xué)習(xí)用二分法求方程近似解的的方法,使學(xué)生體會函數(shù)與方程之間的關(guān)系,通過一些函數(shù)模型的實(shí)例,讓學(xué)生感受建立函數(shù)模型的過程和方法,體會函數(shù)在數(shù)學(xué)和其他學(xué)科中的廣泛應(yīng)用,進(jìn)一步認(rèn)識到函數(shù)是描述客觀世界變化規(guī)律的基本數(shù)學(xué)模型,能初步運(yùn)用函數(shù)思想解決一些生活中的簡單問題。1.了解函數(shù)的零點(diǎn)、方程的根與圖象交點(diǎn)三者之間的聯(lián)系.2.會借助零點(diǎn)存在性定理判斷函數(shù)的零點(diǎn)所在的大致區(qū)間.3.能借助函數(shù)單調(diào)性及圖象判斷零點(diǎn)個數(shù).?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:函數(shù)零點(diǎn)的概念;2.邏輯推理:借助圖像判斷零點(diǎn)個數(shù);3.數(shù)學(xué)運(yùn)算:求函數(shù)零點(diǎn)或零點(diǎn)所在區(qū)間;4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)函數(shù)零點(diǎn)概念.重點(diǎn):零點(diǎn)的概念,及零點(diǎn)與方程根的聯(lián)系;難點(diǎn):零點(diǎn)的概念的形成.

學(xué)生在初中學(xué)習(xí)了 ~ ,但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.因此為了準(zhǔn)確描述這些現(xiàn)象,本節(jié)課主要就旋轉(zhuǎn)度數(shù)和旋轉(zhuǎn)方向?qū)堑母拍钸M(jìn)行推廣.課程目標(biāo)1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數(shù)學(xué)運(yùn)算:會判斷象限角及終邊相同的角.重點(diǎn):理解象限角的概念及終邊相同的角的含義;難點(diǎn):掌握判斷象限角及表示終邊相同的角的方法.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入初中對角的定義是:射線OA繞端點(diǎn)O按逆時針方向旋轉(zhuǎn)一周回到起始位置,在這個過程中可以得到 ~ 范圍內(nèi)的角.但是現(xiàn)實(shí)生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉(zhuǎn)體 ”,且主動輪和被動輪的旋轉(zhuǎn)方向不一致.

本節(jié)主要內(nèi)容是三角函數(shù)的誘導(dǎo)公式中的公式二至公式六,其推導(dǎo)過程中涉及到對稱變換,充分體現(xiàn)對稱變換思想在數(shù)學(xué)中的應(yīng)用,在練習(xí)中加以應(yīng)用,讓學(xué)生進(jìn)一步體會 的任意性;綜合六組誘導(dǎo)公式總結(jié)出記憶誘導(dǎo)公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數(shù)學(xué)思想的探究過程,培養(yǎng)學(xué)生用聯(lián)系、變化的辯證唯物主義觀點(diǎn)去分析問題的能力。誘導(dǎo)公式在三角函數(shù)化簡、求值中具有非常重要的工具作用,要求學(xué)生能熟練的掌握和應(yīng)用。課程目標(biāo)1.借助單位圓,推導(dǎo)出正弦、余弦第二、三、四、五、六組的誘導(dǎo)公式,能正確運(yùn)用誘導(dǎo)公式將任意角的三角函數(shù)化為銳角的三角函數(shù),并解決有關(guān)三角函數(shù)求值、化簡和恒等式證明問題2.通過公式的應(yīng)用,了解未知到已知、復(fù)雜到簡單的轉(zhuǎn)化過程,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力。

《奇偶性》內(nèi)容選自人教版A版第一冊第三章第三節(jié)第二課時;函數(shù)奇偶性是研究函數(shù)的一個重要策略,因此奇偶性成為函數(shù)的重要性質(zhì)之一,它的研究也為今后指對函數(shù)、冪函數(shù)、三角函數(shù)的性質(zhì)等后續(xù)內(nèi)容的深入起著鋪墊的作用.課程目標(biāo)1、理解函數(shù)的奇偶性及其幾何意義;2、學(xué)會運(yùn)用函數(shù)圖象理解和研究函數(shù)的性質(zhì);3、學(xué)會判斷函數(shù)的奇偶性.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:用數(shù)學(xué)語言表示函數(shù)奇偶性;2.邏輯推理:證明函數(shù)奇偶性;3.數(shù)學(xué)運(yùn)算:運(yùn)用函數(shù)奇偶性求參數(shù);4.數(shù)據(jù)分析:利用圖像求奇偶函數(shù);5.數(shù)學(xué)建模:在具體問題情境中,運(yùn)用數(shù)形結(jié)合思想,利用奇偶性解決實(shí)際問題。重點(diǎn):函數(shù)奇偶性概念的形成和函數(shù)奇偶性的判斷;難點(diǎn):函數(shù)奇偶性概念的探究與理解.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。

《基本不等式》在人教A版高中數(shù)學(xué)第一冊第二章第2節(jié),本節(jié)課的內(nèi)容是基本不等式的形式以及推導(dǎo)和證明過程。本章一直在研究不等式的相關(guān)問題,對于本節(jié)課的知識點(diǎn)有了很好的鋪墊作用。同時本節(jié)課的內(nèi)容也是之后基本不等式應(yīng)用的必要基礎(chǔ)。課程目標(biāo)1.掌握基本不等式的形式以及推導(dǎo)過程,會用基本不等式解決簡單問題。2.經(jīng)歷基本不等式的推導(dǎo)與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數(shù)學(xué)的嚴(yán)謹(jǐn)性。數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:基本不等式的形式以及推導(dǎo)過程;2.邏輯推理:基本不等式的證明;3.數(shù)學(xué)運(yùn)算:利用基本不等式求最值;4.數(shù)據(jù)分析:利用基本不等式解決實(shí)際問題;5.數(shù)學(xué)建模:利用函數(shù)的思想和基本不等式解決實(shí)際問題,提升學(xué)生的邏輯推理能力。重點(diǎn):基本不等式的形成以及推導(dǎo)過程和利用基本不等式求最值;難點(diǎn):基本不等式的推導(dǎo)以及證明過程.

知識探究(一):普查與抽查像人口普查這樣,對每一個調(diào)查調(diào)查對象都進(jìn)行調(diào)查的方法,稱為全面調(diào)查(又稱普查)。 在一個調(diào)查中,我們把調(diào)查對象的全體稱為總體,組成總體的每一個調(diào)查對象稱為個體。為了強(qiáng)調(diào)調(diào)查目的,也可以把調(diào)查對象的某些指標(biāo)的全體作為總體,每一個調(diào)查對象的相應(yīng)指標(biāo)作為個體。問題二:除了普查,還有其他的調(diào)查方法嗎?由于人口普查需要花費(fèi)巨大的財力、物力,因而不宜經(jīng)常進(jìn)行。為了及時掌握全國人口變動狀況,我國每年還會進(jìn)行一次人口變動情況的調(diào)查,根據(jù)抽取的居民情況來推斷總體的人口變動情況。像這樣,根據(jù)一定目的,從總體中抽取一部分個體進(jìn)行調(diào)查,并以此為依據(jù)對總體的情況作出估計(jì)和判斷的方法,稱為抽樣調(diào)查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數(shù)稱為樣本量。

(2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計(jì)總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計(jì)每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計(jì)樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點(diǎn);(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點(diǎn)的橫坐標(biāo)之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學(xué)生回顧本節(jié)課知識點(diǎn),教師補(bǔ)充。 讓學(xué)生掌握本節(jié)課知識點(diǎn),并能夠靈活運(yùn)用。

本節(jié)內(nèi)容是復(fù)數(shù)的三角表示,是復(fù)數(shù)與三角函數(shù)的結(jié)合,是對復(fù)數(shù)的拓展延伸,這樣更有利于我們對復(fù)數(shù)的研究。1.數(shù)學(xué)抽象:利用復(fù)數(shù)的三角形式解決實(shí)際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學(xué)生的邏輯思維能力;3.數(shù)學(xué)建模:掌握復(fù)數(shù)的三角形式;4.直觀想象:利用復(fù)數(shù)三角形式解決一系列實(shí)際問題;5.數(shù)學(xué)運(yùn)算:能夠正確運(yùn)用復(fù)數(shù)三角形式計(jì)算復(fù)數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導(dǎo)過程—得出結(jié)論—例題講解—練習(xí)鞏固的過程,讓學(xué)生認(rèn)識到數(shù)學(xué)知識的邏輯性和嚴(yán)密性。復(fù)數(shù)的三角形式、復(fù)數(shù)三角形式乘法、除法法則及其幾何意義舊知導(dǎo)入:問題一:你還記得復(fù)數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復(fù)數(shù)呢?如何表示?

本節(jié)課是在學(xué)習(xí)了三角函數(shù)圖象和性質(zhì)的前提下來學(xué)習(xí)三角函數(shù)模型的簡單應(yīng)用,進(jìn)一步突出函數(shù)來源于生活應(yīng)用于生活的思想,讓學(xué)生體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)“建模”思想,從而培養(yǎng)學(xué)生的創(chuàng)新精神和實(shí)踐能力.課程目標(biāo)1.了解三角函數(shù)是描述周期變化現(xiàn)象的重要函數(shù)模型,并會用三角函數(shù)模型解決一些簡單的實(shí)際問題.2.實(shí)際問題抽象為三角函數(shù)模型. 數(shù)學(xué)學(xué)科素養(yǎng)1.邏輯抽象:實(shí)際問題抽象為三角函數(shù)模型問題;2.數(shù)據(jù)分析:分析、整理、利用信息,從實(shí)際問題中抽取基本的數(shù)學(xué)關(guān)系來建立數(shù)學(xué)模型; 3.數(shù)學(xué)運(yùn)算:實(shí)際問題求解; 4.數(shù)學(xué)建模:體驗(yàn)一些具有周期性變化規(guī)律的實(shí)際問題的數(shù)學(xué)建模思想,提高學(xué)生的建模、分析問題、數(shù)形結(jié)合、抽象概括等能力.

可以通過下面的步驟計(jì)算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計(jì)算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項(xiàng)數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項(xiàng)與第i+1項(xiàng)的平均數(shù)。我們在初中學(xué)過的中位數(shù),相當(dāng)于是第50百分位數(shù)。在實(shí)際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計(jì)中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計(jì)樹人中學(xué)高一年級女生第25,50,75百分位數(shù)。

本節(jié)課在已學(xué)冪函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)的增長方式存在很大差異.事實(shí)上,這種差異正是不同類型現(xiàn)實(shí)問題具有不同增長規(guī)律的反應(yīng).而本節(jié)課重在研究不同函數(shù)增長的差異.課程目標(biāo)1.掌握常見增長函數(shù)的定義、圖象、性質(zhì),并體會其增長的快慢.2.理解直線上升、對數(shù)增長、指數(shù)爆炸的含義以及三種函數(shù)模型的性質(zhì)的比較,培養(yǎng)數(shù)學(xué)建模和數(shù)學(xué)運(yùn)算等核心素養(yǎng).數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:常見增長函數(shù)的定義、圖象、性質(zhì);2.邏輯推理:三種函數(shù)的增長速度比較;3.數(shù)學(xué)運(yùn)算:由函數(shù)圖像求函數(shù)解析式;4.數(shù)據(jù)分析:由圖象判斷指數(shù)函數(shù)、對數(shù)函數(shù)和冪函數(shù);5.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)函數(shù)性質(zhì).重點(diǎn):比較函數(shù)值得大??;難點(diǎn):幾種增長函數(shù)模型的應(yīng)用.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。

對數(shù)函數(shù)與指數(shù)函數(shù)是相通的,本節(jié)在已經(jīng)學(xué)習(xí)指數(shù)函數(shù)的基礎(chǔ)上通過實(shí)例總結(jié)歸納對數(shù)函數(shù)的概念,通過函數(shù)的形式與特征解決一些與對數(shù)函數(shù)有關(guān)的問題.課程目標(biāo)1、通過實(shí)際問題了解對數(shù)函數(shù)的實(shí)際背景;2、掌握對數(shù)函數(shù)的概念,并會判斷一些函數(shù)是否是對數(shù)函數(shù). 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的概念;2.邏輯推理:用待定系數(shù)法求函數(shù)解析式及解析值;3.數(shù)學(xué)運(yùn)算:利用對數(shù)函數(shù)的概念求參數(shù);4.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的思想總結(jié)對數(shù)函數(shù)概念.重點(diǎn):理解對數(shù)函數(shù)的概念和意義;難點(diǎn):理解對數(shù)函數(shù)的概念.教學(xué)方法:以學(xué)生為主體,采用誘思探究式教學(xué),精講多練。教學(xué)工具:多媒體。一、 情景導(dǎo)入我們已經(jīng)研究了死亡生物體內(nèi)碳14的含量y隨死亡時間x的變化而衰減的規(guī)律.反過來,已知死亡生物體內(nèi)碳14的含量,如何得知死亡了多長時間呢?進(jìn)一步地,死亡時間t是碳14的含量y的函數(shù)嗎?
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。