
《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。

一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)

冪函數是在繼一次函數、反比例函數、二次函數之后,又學習了單調性、最值、奇偶性的基礎上,借助實例,總結出冪函數的概念,再借助圖像研究冪函數的性質.課程目標1、理解冪函數的概念,會畫冪函數y=x,y=x2,y=x3,y=x-1,y=x 的圖象;2、結合這幾個冪函數的圖象,理解冪函數圖象的變化情況和性質;3、通過觀察、總結冪函數的性質,培養(yǎng)學生概括抽象和識圖能力.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數冪函數;2.邏輯推理:常見冪函數的性質;3.數學運算:利用冪函數的概念求參數;4.數據分析:比較冪函數大小;5.數學建模:在具體問題情境中,運用數形結合思想,利用冪函數性質、圖像特點解決實際問題。重點:常見冪函數的概念、圖象和性質;難點:冪函數的單調性及比較兩個冪值的大小.

《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.

本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;

學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.

知識探究(一):普查與抽查像人口普查這樣,對每一個調查調查對象都進行調查的方法,稱為全面調查(又稱普查)。 在一個調查中,我們把調查對象的全體稱為總體,組成總體的每一個調查對象稱為個體。為了強調調查目的,也可以把調查對象的某些指標的全體作為總體,每一個調查對象的相應指標作為個體。問題二:除了普查,還有其他的調查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調查,根據抽取的居民情況來推斷總體的人口變動情況。像這樣,根據一定目的,從總體中抽取一部分個體進行調查,并以此為依據對總體的情況作出估計和判斷的方法,稱為抽樣調查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數稱為樣本量。

本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

本章通過學習用二分法求方程近似解的的方法,使學生體會函數與方程之間的關系,通過一些函數模型的實例,讓學生感受建立函數模型的過程和方法,體會函數在數學和其他學科中的廣泛應用,進一步認識到函數是描述客觀世界變化規(guī)律的基本數學模型,能初步運用函數思想解決一些生活中的簡單問題。1.了解函數的零點、方程的根與圖象交點三者之間的聯系.2.會借助零點存在性定理判斷函數的零點所在的大致區(qū)間.3.能借助函數單調性及圖象判斷零點個數.數學學科素養(yǎng)1.數學抽象:函數零點的概念;2.邏輯推理:借助圖像判斷零點個數;3.數學運算:求函數零點或零點所在區(qū)間;4.數學建模:通過由抽象到具體,由具體到一般的思想總結函數零點概念.重點:零點的概念,及零點與方程根的聯系;難點:零點的概念的形成.

本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;

活動目標:1、在對自己的家進行觀察后,能大膽地表達出自己的見解。2、充分發(fā)揮幼兒的想象,設計自己心中的家庭用具?;顒訙蕚洌?、課前對自己家進行觀察。2、積木若干;繪畫材料。3、多媒體課件?;顒舆^程:一、課件出示,直導課題?! ∏皫滋?,我們說起了家,都說自己家里的東西好,那請你們來講講看,你們家的什么東西好,好在什么地方?(鼓勵幼兒發(fā)表見解)二、啟發(fā)討論?! 〗裉炖蠋熃o你們帶來了一個“家”,你們來看看,這個家怎么樣?(引導幼兒討論`如何為這個家設計家庭用具)

(2)平均數受數據中的極端值(2個95)影響較大,使平均數在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數來估計每天的用水量更合適。1、樣本的數字特征:眾數、中位數和平均數;2、用樣本頻率分布直方圖估計樣本的眾數、中位數、平均數。(1)眾數規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數據的估值平均數。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。

問題二:上述問題中,甲、乙的平均數、中位數、眾數相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據上述數據計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數據的離散程度。由極差發(fā)現甲的成績波動范圍比乙的大。但由于極差只使用了數據中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數據離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

可以通過下面的步驟計算一組n個數據的第p百分位數:第一步:按從小到大排列原始數據;第二步:計算i=n×p%;第三步:若i不是整數,而大于i的比鄰整數位j,則第p百分位數為第j項數據;若i是整數,則第p百分位數為第i項與第i+1項的平均數。我們在初中學過的中位數,相當于是第50百分位數。在實際應用中,除了中位數外,常用的分位數還有第25百分位數,第75百分位數。這三個分位數把一組由小到大排列后的數據分成四等份,因此稱為四分位數。其中第25百分位數也稱為第一四分位數或下四分位數等,第75百分位數也稱為第三四分位數或上四分位數等。另外,像第1百分位數,第5百分位數,第95百分位數,和第99百分位數在統計中也經常被使用。例2、根據下列樣本數據,估計樹人中學高一年級女生第25,50,75百分位數。

課程名稱數學課題名稱8.2 直線的方程課時2授課日期2016.3任課教師劉娜目標群體14級五高班教學環(huán)境教室學習目標知識目標: (1)理解直線的傾角、斜率的概念; (2)掌握直線的傾角、斜率的計算方法. 職業(yè)通用能力目標: 正確分析問題的能力 制造業(yè)通用能力目標: 正確分析問題的能力學習重點直線的斜率公式的應用.學習難點直線的斜率概念和公式的理解.教法、學法講授、分析、討論、引導、提問教學媒體黑板、粉筆

由樣本相關系數??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結1.線性相關系數是從數值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數要精細得多,需要注意的是線性相關系數r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內收入的總和)與A商品銷售額的10年數據,如表所示.畫出散點圖,判斷成對樣本數據是否線性相關,并通過樣本相關系數推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

我們知道數列是一種特殊的函數,在函數的研究中,我們在理解了函數的一般概念,了解了函數變化規(guī)律的研究內容(如單調性,奇偶性等)后,通過研究基本初等函數不僅加深了對函數的理解,而且掌握了冪函數,指數函數,對數函數,三角函數等非常有用的函數模型。類似地,在了解了數列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數列,建立它們的通項公式和前n項和公式,并應用它們解決實際問題和數學問題,從中感受數學模型的現實意義與應用,下面,我們從一類取值規(guī)律比較簡單的數列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內到外各圈的示板數依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

1.對稱性與首末兩端“等距離”的兩個二項式系數相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數時,中間的一項C_n^(n/2)取得最大值;當n是奇數時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數之和為2^n1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

課程分析中專數學課程教學是專業(yè)建設與專業(yè)課程體系改革的一部分,應與專業(yè)課教學融為一體,立足于為專業(yè)課服務,解決實際生活中常見問題,結合中專學生的實際,強調數學的應用性,以滿足學生在今后的工作崗位上的實際應用為主,這也體現了新課標中突出應用性的理念。分段函數的實際應用在本課程中的地位:(1) 函數是中專數學學習的重點和難點,函數的思想貫穿于整個中專數學之中,分段函數在科技和生活的各個領域有著十分廣泛的應用。(2) 本節(jié)所探討學習分段函數在生活生產中的實際問題上應用,培養(yǎng)學生分析與解決問題的能力,養(yǎng)成正確的數學化理性思維的同時,形成一種意識,即數學“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學計劃,函數的實際應用舉例內容安排在第三章函數的最后一部分講解。本節(jié)內容是在學生熟知函數的概念,表示方法和對函數性質有一定了解的基礎上研究分段函數,同時深化學生對函數概念的理解和認識,也為接下來學習指數函數和對數函數作了良好鋪墊。根據13級學生實際情況,由生活生產中的實際問題入手,求得分段函數此部分知識以學生生活常識為背景,可以引導學生分析得出。

課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質和推論,會應用定理和推論解釋生活中的一些現象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當的符號表示點、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。