
教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

(8)物價部門規(guī)定,此新型通訊產(chǎn)品售價不得高于每件80元。在此情況下,售價定為多少元時,該公司可獲得最大利潤?最大利潤為多少萬元?若該公司計劃年初投入進貨成本m不超過200萬元,請你分析一下,售價定為多少元,公司獲利最大?售價定為多少元,公司獲利最少?三、小練兵:某商場經(jīng)營某種品牌的童裝,購進時的單價是60元.根據(jù)市場調(diào)查,銷售量y(件)與銷售單價x(元)之間的函數(shù)關系式為y= –20 x +1800.(1)寫出銷售該品牌童裝獲得的利潤w(元)與銷售單價x(元)之間的函數(shù)關系式;(2)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,不高于78元,那么商場銷售該品牌童裝獲得的最大利潤是多少元?(3)若童裝廠規(guī)定該品牌童裝銷售單價不低于76元,且商場要完成不少于240件的銷售任務,那么商場銷售該品牌童裝獲得的最大利潤是多少元?

解:(1)設第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結:解決此類問題的關鍵是先進行數(shù)學建模,將實際問題中的條件轉化為數(shù)學問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關系式,將實際問題轉化為純數(shù)學問題;(2)應用有關函數(shù)的性質作答.

解析:(1)連接BI,根據(jù)I是△ABC的內(nèi)心,得出∠1=∠2,∠3=∠4,再根據(jù)∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,得出∠BIE=∠IBE,即可證出IE=BE;(2)由三角形的內(nèi)心,得到角平分線,根據(jù)等腰三角形的性質得到邊相等,由等量代換得到四條邊都相等,推出四邊形是菱形.解:(1)BE=IE.理由如下:如圖①,連接BI,∵I是△ABC的內(nèi)心,∴∠1=∠2,∠3=∠4.∵∠BIE=∠1+∠3,∠IBE=∠5+∠4,而∠5=∠1=∠2,∴∠BIE=∠IBE,∴BE=IE;(2)四邊形BECI是菱形.證明如下:∵∠BED=∠CED=60°,∴∠ABC=∠ACB=60°,∴BE=CE.∵I是△ABC的內(nèi)心,∴∠4=12∠ABC=30°,∠ICD=12∠ACB=30°,∴∠4=∠ICD,∴BI=IC.由(1)證得IE=BE,∴BE=CE=BI=IC,∴四邊形BECI是菱形.方法總結:解決本題要掌握三角形的內(nèi)心的性質,以及圓周角定理.

首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

解析:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,根據(jù)對稱軸是x=-3,求出b=6,即可得出答案;(2)根據(jù)CD∥x軸,得出點C與點D關于x=-3對稱,根據(jù)點C在對稱軸左側,且CD=8,求出點C的橫坐標和縱坐標,再根據(jù)點B的坐標為(0,5),求出△BCD中CD邊上的高,即可求出△BCD的面積.解:(1)把點A(-4,-3)代入y=x2+bx+c得16-4b+c=-3,∴c-4b=-19.∵對稱軸是x=-3,∴-b2=-3,∴b=6,∴c=5,∴拋物線的解析式是y=x2+6x+5;(2)∵CD∥x軸,∴點C與點D關于x=-3對稱.∵點C在對稱軸左側,且CD=8,∴點C的橫坐標為-7,∴點C的縱坐標為(-7)2+6×(-7)+5=12.∵點B的坐標為(0,5),∴△BCD中CD邊上的高為12-5=7,∴△BCD的面積=12×8×7=28.方法總結:此題考查了待定系數(shù)法求二次函數(shù)的解析式以及二次函數(shù)的圖象和性質,注意掌握數(shù)形結合思想與方程思想的應用.

問題2、如何用測角儀測量一個低處物體的俯角呢?和測量仰角的步驟是一樣的,只不過測量俯角時,轉動度盤,使度盤的直徑對準低處的目標,記下此時鉛垂線所指的度數(shù),同樣根據(jù)“同角的余角相等”,鉛垂線所指的度數(shù)就是低處的俯角.活動三:測量底部可以到達的物體的高度.“底部可以到達”,就是在地面上可以無障礙地直接測得測點與被測物體底部之間的距離.要測旗桿MN的高度,可按下列步驟進行:(如下圖)1.在測點A處安置測傾器(即測角儀),測得M的仰角∠MCE=α.2.量出測點A到物體底部N的水平距離AN=l.3.量出測傾器(即測角儀)的高度AC=a(即頂線PQ成水平位置時,它與地面的距離).根據(jù)測量數(shù)據(jù),就能求出物體MN的高度.在Rt△MEC中,∠MCE=α,AN=EC=l,所以tanα= ,即ME=tana·EC=l·tanα.又因為NE=AC=a,所以MN=ME+EN=l·tanα+a.

解在角度單位狀態(tài)為“度”的情況下(屏幕顯示出 ),按下列順序依次按鍵:顯示結果為36.538 445 77.再按鍵:顯示結果為36゜32′18.4.所以,x≈36゜32′.例5 已知cot x=0.1950,求銳角x.(精確到1′)分析根據(jù)tan x= ,可以求出tan x的值,然后根據(jù)例4的方法就可以求出銳角x的值.四、課堂練習1. 使用計算器求下列三角函數(shù)值.(精確到0.0001)sin24゜,cos51゜42′20″,tan70゜21′,cot70゜.2. 已知銳角a的三角函數(shù)值,使用計算器求銳角a.(精確到1′)(1)sin a=0.2476; (2)cos a=0.4174;(3)tan a=0.1890; (4)cot a=1.3773.五、學習小結內(nèi)容總結不同計算器操作不同,按鍵定義也不一樣。同一銳角的正切值與余切值互為倒數(shù)。在生活中運用計算器一定要注意計算器說明書的保管與使用。方法歸納在解決直角三角形的相關問題時,常常使用計算器幫助我們處理比較復雜的計算。

然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結:解決本題的關鍵是能借助仰角、俯角和坡度構造直角三角形,并結合圖形利用三角函數(shù)解直角三角形.

(2)問銷售該商品第幾天時,當天銷售利潤最大,最大利潤是多少?解析:(1)分1≤x<50和50≤x≤90兩種情況進行討論,利用利潤=每件的利潤×銷售的件數(shù),即可求得函數(shù)的解析式;(2)利用(1)得到的兩個解析式,結合二次函數(shù)與一次函數(shù)的性質分別求得最值,然后兩種情況下取最大的即可.解:(1)當1≤x<50時,y=(200-2x)(x+40-30)=-2x2+180x+2000;當50≤x≤90時,y=(200-2x)(90-30)=-120x+12000.綜上所述,y=-2x2+180x+2000(1≤x<50),-120x+12000(50≤x≤90);(2)當1≤x<50時,y=-2x2+180x+2000,二次函數(shù)開口向下,對稱軸為x=45,當x=45時,y最大=-2×452+180×45+2000=6050;當50≤x≤90時,y=-120x+12000,y隨x的增大而減小,當x=50時,y最大=6000.綜上所述,銷售該商品第45天時,當天銷售利潤最大,最大利潤是6050元.方法總結:本題考查了二次函數(shù)的應用,讀懂表格信息、理解利潤的計算方法,即利潤=每件的利潤×銷售的件數(shù),是解決問題的關鍵.

如圖所示,要用長20m的鐵欄桿,圍成一個一面靠墻的長方形花圃,怎么圍才能使圍成的花圃的面積最大?如果花圃垂直于墻的一邊長為xm,花圃的面積為ym2,那么y=x(20-2x).試問:x為何值時,才能使y的值最大?二、合作探究探究點一:二次函數(shù)y=ax2+bx+c的最值已知二次函數(shù)y=ax2+4x+a-1的最小值為2,則a的值為()A.3 B.-1 C.4 D.4或-1解析:∵二次函數(shù)y=ax2+4x+a-1有最小值2,∴a>0,y最小值=4ac-b24a=4a(a-1)-424a=2,整理,得a2-3a-4=0,解得a=-1或4.∵a>0,∴a=4.故選C.方法總結:求二次函數(shù)的最大(小)值有三種方法,第一種是由圖象直接得出,第二種是配方法,第三種是公式法.變式訓練:見《學練優(yōu)》本課時練習“課堂達標訓練” 第1題探究點二:利用二次函數(shù)求圖形面積的最大值【類型一】 利用二次函數(shù)求矩形面積的最大值

解析:點E是BC︵的中點,根據(jù)圓周角定理的推論可得∠BAE=∠CBE,可證得△BDE∽△ABE,然后由相似三角形的對應邊成比例得結論.證明:∵點E是BC︵的中點,即BE︵=CE︵,∴∠BAE=∠CBE.∵∠E=∠E(公共角),∴△BDE∽△ABE,∴BE∶AE=DE∶BE,∴BE2=AE·DE.方法總結:圓周角定理的推論是和角有關系的定理,所以在圓中,解決相似三角形的問題常常考慮此定理.三、板書設計圓周角和圓心角的關系1.圓周角的概念2.圓周角定理3.圓周角定理的推論本節(jié)課的重點是圓周角與圓心角的關系,難點是應用所學知識靈活解題.在本節(jié)課的教學中,學生對圓周角的概念和“同弧所對的圓周角相等”這一性質較容易掌握,理解起來問題也不大,而對圓周角與圓心角的關系理解起來則相對困難,因此在教學過程中要著重引導學生對這一知識的探索與理解.還有些學生在應用知識解決問題的過程中往往會忽略同弧的問題,在教學過程中要對此予以足夠的強調(diào),借助多媒體加以突出.

解析:(1)由切線的性質得AB⊥BF,因為CD⊥AB,所以CD∥BF,由平行線的性質得∠ADC=∠F,由圓周角定理的推論得∠ABC=∠ADC,于是證得∠ABC=∠F;(2)連接BD.由直徑所對的圓周角是直角得∠ADB=90°,因為∠ABF=90°,然后運用解直角三角形解答.(1)證明:∵BF為⊙O的切線,∴AB⊥BF.∵CD⊥AB,∴∠ABF=∠AHD=90°,∴CD∥BF.∴∠ADC=∠F.又∵∠ABC=∠ADC,∴∠ABC=∠F;(2)解:連接BD,∵AB為⊙O的直徑,∴∠ADB=90°,∴∠A+∠ABD=90°.由(1)可知∠ABF=90°,∴∠ABD+∠DBF=90°,∴∠A=∠DBF.又∵∠A=∠C,∴∠C=∠DBF.在Rt△DBF中,sin∠DBF=sinC=35,DF=6,∴BF=10,∴BD=8.在Rt△ABD中,sinA=sinC=35,BD=8,∴AB=403.∴⊙O的半徑為203.方法總結:運用切線的性質來進行計算或論證,常通過作輔助線連接圓心和切點,利用垂直構造直角三角形解決有關問題.

(一) 課標要求本單元所依據(jù)的課程標準是道德與法治課程標準 (2022年版) :第 四部分課程內(nèi)容第四學段 (7-9年級) 國情教育中的:1. “了解世界正處于百年未有之大變局 ,具有初步的國際視野 , 了 解全人類共同價值的內(nèi)涵 ,領悟構建人類命運共同體的意義 。 ”2. “ 以 “于變局中開新局 ”為議題 ,結合實例分析如何應對人類共 同面對的重大挑戰(zhàn) ,認識中國的發(fā)展離不開世界 ,世界的繁榮也需要中 國 。 ”3. “通過與中華優(yōu)秀文化傳統(tǒng) 、革命傳統(tǒng) 、 國情教育等方面的關聯(lián) ,從真實的社會情境角度進行道德教育 ,強化學生的道德體驗和道德實 踐 , 旨在引導學生正確認識 自 己 , 以及個人與家庭 、他人 、社會 、 國家 和人類文明的關系 , 了解國家發(fā)展和世界發(fā)展大勢 ,增強社會責任感和 擔當意識 ,立志做社會主義建設者和接班人 。 ”

一、說教材本課選自北師大小學數(shù)學實驗教材一年級上冊《上下》,它屬于“空間與圖形”中的內(nèi)容,為以后學習“方向與位置”及“方向與路線”做好鋪墊。在這一課時里我充分利用學生已有的生活經(jīng)驗,把這一知識的學習融入到找家的活動,讓學生在活動中認識上下的位置關系。依據(jù)新課標精神和學生實際,結合教材我確定了如下教學目標(1)知識與技能目標:體驗上下的位置關系,能用準確的數(shù)學語言表達出來。(2)能力目標:培養(yǎng)學生觀察、分析、概括的能力及想象力,發(fā)展學生的空間觀念。(3)、情感目標:在有趣的課堂活動中體驗數(shù)學與生活的緊密聯(lián)系及數(shù)學學習的快樂,并養(yǎng)成熱情好客尊敬長輩的行為習慣。4、教學重、難點:重點是學生會用自己的的語言描述上下位置關系,難點是體會上下位置關系的相對性。依據(jù)一年級學生的年齡特點,為了激發(fā)學生的學習興趣,培養(yǎng)學生自主學習的能力,我是這樣實施教學的。

(一)教學內(nèi)容:教科書數(shù)學一年級上冊第19-20的內(nèi)容及練習二的第8-10題。(二)教材所處地位及作用:“幾和幾”數(shù)的組成知識是學習加減法的基礎,這是一年級教學要注意的部分。在認數(shù)教學中,主要通過實物演示和動手操作的游戲,使學生知道了數(shù)的組成。(三)教學目標、重點、難點:教學目標:(1)使學生通過動手操作掌握5以內(nèi)數(shù)的組成。(2)使學生能熟練地說出5以內(nèi)數(shù)的級成,培養(yǎng)學生的觀察、操作、表達能力,初步的自學能力。(3)培養(yǎng)學生認真做練習的良好習慣,積極動腦思考的學習品質及互助,創(chuàng)新意識和評價意識。教學重點:讓學生通過動手操作掌握5以內(nèi)數(shù)的組成教學難點:引導學生通過動手操作并掌握5以內(nèi)數(shù)的組成。二、說教法本課時教學方法主要體現(xiàn)以下幾點:1、創(chuàng)設游戲充分感知,然后再交流,使學生在主動參與知識的形成過程中體驗到成功的快樂。最后,為學生創(chuàng)設了“分小棒”等游戲,讓學生不斷地動手操作與合作討論中自己掌握知識,并初步培養(yǎng)學生的自學能力。

一、說教材《下課啦》是北師大一年級上冊第二單元的內(nèi)容。本節(jié)課是學生在學習比大小、比多少基礎上進行學習的。比高矮、長短對于學生而言并不陌生,這節(jié)課的內(nèi)容難在學生初步掌握比高矮、長短的方法。因此,我把本節(jié)課的目標預設為:1、在比一比的活動中,通過直觀地比較物體的高矮、長短、初步感知幾個物體之間的高矮、長短。2、知道在比較高矮、長短時需要在同一起點進行。3、通過與他人合作交流,掌握比較的方法,獲得成功的體驗,增強自信心。教學重點通過觀察、比較、讓學生獲得高矮、長短等比較活動的方法。教學難點讓學生用自己的語言組織比較的方法。二、說學情本節(jié)內(nèi)容的教學主要是比較物體的高矮、長短,學生對這一方面的知識已經(jīng)有一定的生活經(jīng)驗,但層次參差不齊,需要教師知識性的梳理。因此在教學中應結合學生年齡特點、生活背景等具體情況的基礎上進行教學。

教材分析:本課選用兒童熟悉喜好的瓜果為內(nèi)容題材,并視之為繪畫學習的切入點。通過觀察辨識了解瓜果的形狀和特點,品嘗其色香滋味,使學生從感官的滿足引發(fā)表現(xiàn)的欲望,促進主動地投入學習。本課教學內(nèi)容偏重于對各種瓜果的形狀和色彩運用的認識和表現(xiàn),通過對瓜果的觀察了解,畫學生喜愛的水果,幫助他們建立親近生活的熱烈情感。所以我把認識瓜果的基本形狀和了解熟悉色彩運用的基本知識與方法定為教學重點。由于學習內(nèi)容接近學生生活,在直接體驗的基礎上,學生一般能夠掌握瓜果造型的特點,并饒有興趣地投入到學習活動中去。為了更好的拓展學生的想象空間,所以,在教學中我把豐富的創(chuàng)造想象定為教學難點.

(一)導入 謎語導入引出課題,調(diào)動學生熱情及興趣。這一環(huán)節(jié)里又通過對學生的提問來加深對彩虹色彩的記憶,為下面的課做鋪墊。(在此設定三個問題來提問互動,老師對問題回答要明確,)說一說:彩虹由哪些顏色組成?你喜歡彩虹嗎?為什么?(二) 學習認識顏色和運用顏色(此處多媒體出示圖片: 1.生活中出現(xiàn)的彩虹現(xiàn)象圖片2.彩虹色彩排列順序;)借機引出請學生去畫。 1.請同學們欣賞彩虹現(xiàn)象圖片。(此環(huán)節(jié)設置2分鐘)2.請同學們動動小手,用彩筆按照彩虹的排列拼擺“課桌上的彩虹”。(此環(huán)節(jié)設置3分鐘)目的在于把之前所說的所做的變?yōu)楦庇^的形象,用彩筆的色彩給孩子們的視覺帶來沖擊力,讓學生的創(chuàng)作熱情更加高漲,從而展開更加豐富的聯(lián)想。3是有了認識顏色的基礎繪畫出彩虹。(此環(huán)節(jié)設置3分鐘)

二、說教法學法教法:本課教學內(nèi)容偏重于對各種水果的形狀和色彩運用的認識和表現(xiàn)。由于學習內(nèi)容接近學生生活,因此,在教學中我采用直接體驗、引導發(fā)現(xiàn)法,作品欣賞的教學法進行教學,以便學生在生動活潑的情境中,感受美的過程,去發(fā)現(xiàn)美,創(chuàng)造美。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。