
由于題目較簡(jiǎn)單,所以學(xué)生分析解答時(shí)很有信心,且正確率也比較高,同時(shí)也進(jìn)一步體會(huì)到了借助“線段圖”分析行程問(wèn)題的優(yōu)越性.六、歸納總結(jié):活動(dòng)內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識(shí):1.會(huì)借線段圖分析行程問(wèn)題.2.各種行程問(wèn)題中的規(guī)律及等量關(guān)系.同向追及問(wèn)題:①同時(shí)不同地——甲路程+路程差=乙路程; 甲時(shí)間=乙時(shí)間.②同地不同時(shí)——甲時(shí)間+時(shí)間差=乙時(shí)間; 甲路程=乙路程.相向的相遇問(wèn)題:甲路程+乙路程=總路程; 甲時(shí)間=乙時(shí)間.目的:強(qiáng)調(diào)本課的重點(diǎn)內(nèi)容是要學(xué)會(huì)借線段圖來(lái)分析行程問(wèn)題,并能掌握各種行程問(wèn)題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對(duì)所學(xué)知識(shí)和思想方法進(jìn)行歸納和總結(jié),從而形成自己對(duì)數(shù)學(xué)知識(shí)的理解和解決問(wèn)題的方法策略.

一、情境導(dǎo)入游泳是一項(xiàng)深受青少年喜愛(ài)的體育活動(dòng),學(xué)校為了加強(qiáng)學(xué)生的安全意識(shí),組織學(xué)生觀看了紀(jì)實(shí)片《孩子,請(qǐng)不要私自下水》,并于觀看后在本校的2000名學(xué)生中作了抽樣調(diào)查.你能根據(jù)下面兩個(gè)不完整的統(tǒng)計(jì)圖回答以下問(wèn)題嗎?(1)這次抽樣調(diào)查中,共調(diào)查了多少名學(xué)生?(2)補(bǔ)全兩個(gè)統(tǒng)計(jì)圖;(3)根據(jù)抽樣調(diào)查的結(jié)果,估算該校2000名學(xué)生中大約有多少人“一定會(huì)下河游泳”?二、合作探究探究點(diǎn)一:頻數(shù)直方圖的制作小紅家開(kāi)了一個(gè)報(bào)亭,為了使每天進(jìn)的某種報(bào)紙適量,小紅對(duì)這種報(bào)紙40天的銷售情況作了調(diào)查,這40天賣出這種報(bào)紙的份數(shù)如下:136 175 153 135 161 140 155 180 179 166188 142 144 154 155 157 160 162 135 156148 173 154 145 158 150 154 168 168 155169 157 157 149 134 167 151 144 155 131將上述數(shù)據(jù)分組,并繪制相應(yīng)的頻數(shù)直方圖.解析:先找出這組數(shù)據(jù)的最大值和最小值,再以10為組距把數(shù)據(jù)分組,然后制作頻數(shù)直方圖.解:通過(guò)觀察這組數(shù)據(jù)的最大值為188,最小值為131,它們的差是57,所以取組距為10,分6組,整理可得下面的頻數(shù)分布表:

光年是表示較大距離的一個(gè)單位, 而納米(nanometer)則是表示微小距離的單位。1納米= 米,即1米= 納米。我們通常使用的尺上的一小格是一毫米(mm),1毫米= 米。可見(jiàn),1毫米= 納米,容易算出,1納米相當(dāng)于1毫米的一百萬(wàn)分之一。可想而知,1納米是多么的小。超微粒子的大小一般在1~100 納米范圍內(nèi),故又稱納米粒子。納米粒子的尺寸小,表面積大,具有高度的活性。因此,利用納米粒子可制備活性極高的催化劑,在火箭固體燃料中摻入鋁的納米微粒,可提高燃燒效率若干倍。利用鐵磁納米材料具有很高矯頑力的特點(diǎn),可制成磁性信用卡、磁性鑰匙,以及高性能錄像帶等 。利用納米材料等離子共振頻率的可調(diào)性可制成隱形飛機(jī)的涂料。納米材料的表面積大,對(duì)外界環(huán)境(物理的和化學(xué)的)十分敏感,在制造傳感器方面是有前途的材料,目前已開(kāi)發(fā)出測(cè)量溫度、熱輻射和檢測(cè)各種特定氣體的傳感器。在生物和醫(yī)學(xué)中也有重要應(yīng)用。納米材料科學(xué)是20世紀(jì)80年代末誕生并正在崛起的科技新領(lǐng)域,它將成為跨世紀(jì)的科技熱點(diǎn)之一。

議一議數(shù)軸上的兩個(gè)點(diǎn),右邊點(diǎn)表示的數(shù)與左邊點(diǎn)表示的數(shù)有怎樣的大小關(guān)系?數(shù)軸上表示的數(shù),▁▁▁邊的總比▁▁▁邊的大;正數(shù)▁▁▁0,負(fù)數(shù)▁▁▁0,正數(shù)▁▁▁負(fù)數(shù)。練習(xí):比較大小:-3▁5; 0 ▁-4 ;-3 ▁-2.5。3、合作交流(1) 什么是數(shù)軸?怎樣畫數(shù)軸。(2) 有理數(shù)與數(shù)軸上的點(diǎn)之間存在怎樣的關(guān)系?(3) 什么是相反數(shù)?怎樣求一個(gè)數(shù)的相反數(shù)?(4) 如何利用數(shù)軸比較有理數(shù)的大小?5、隨堂練習(xí):(1)下列說(shuō)法正確的是( ) A、 數(shù)軸上的點(diǎn)只能表示有理數(shù)B、 一個(gè)數(shù)只能用數(shù)軸上的一個(gè)點(diǎn)表示C、 在1和3之間只有2D、 在數(shù)軸上離原點(diǎn)2個(gè)單位長(zhǎng)度的點(diǎn)表示的數(shù)是2 (2)語(yǔ)句:①-5是相反數(shù)?②-5與+3互為相反數(shù)③-5是5的相反數(shù)④-5和5互為相反數(shù)⑤0的相反數(shù)是0⑥-0=0。上述說(shuō)法中正確的是( )

1. 小明的腳長(zhǎng)23.6厘米,鞋號(hào)應(yīng)是 號(hào)。2.小亮的腳長(zhǎng)25.1厘米,鞋號(hào)應(yīng)是 號(hào)。3.小王選了25號(hào)鞋,那么他的腳長(zhǎng)約是大于等于 厘米且小于 厘米。小結(jié):剛才同學(xué)們都體會(huì)到了分組編碼使原來(lái)繁多,無(wú)敘的數(shù)據(jù)簡(jiǎn)化、有序。因此分組、編碼是整理數(shù)據(jù)的一種重要的方法,在工商業(yè)、科研等活動(dòng)中有廣泛的應(yīng)用(四)反饋練習(xí)課內(nèi)練習(xí)以下是某校七年級(jí)南,女生各10名右眼裸視的檢測(cè)結(jié)果:0.2,0.5,0.7(女),1.0,0.3(女),1.2(女),1.5,1.2,1.5(女),0.4(女),1.5,1.1,1.2(女),0.8(女),1.5(女),0.6(女),1.0(女),0.8,1.5,1.2(1)這組數(shù)據(jù)是用什么方法獲得的?(2)學(xué)生右眼視力跟性別有關(guān)嗎?為了回答這個(gè)問(wèn)題,你將怎樣處理這組數(shù)據(jù)?你的結(jié)論是什么?(五). 歸納小結(jié),體味數(shù)學(xué)快樂(lè)通過(guò)本節(jié)課的學(xué)習(xí),你有那些收獲?(課堂小結(jié)交給學(xué)生)數(shù)據(jù)收集的方法:直接觀察、測(cè)量、調(diào)查、實(shí)驗(yàn)、查閱文獻(xiàn)資料、使用互連網(wǎng)等。整理數(shù)據(jù)的方法:分類、排序、分組編碼等。(學(xué)生可能還會(huì)指出鞋碼和腳長(zhǎng)之間的關(guān)系等)

1.進(jìn)一步理解字母表示數(shù)的意義,能結(jié)合具體情景給字母賦于實(shí)際意義;理解代數(shù)式和代數(shù)式的值的意義,能解釋一些簡(jiǎn)單代數(shù)式的實(shí)際背景或幾何意義,在具體情景中能求出代數(shù)式的值. (重難點(diǎn))2.通過(guò)創(chuàng)設(shè)實(shí)際背景和引用符號(hào),經(jīng)歷觀察、體驗(yàn)、驗(yàn)算、猜想、歸納等數(shù)學(xué)過(guò)程,體會(huì)數(shù)學(xué)與現(xiàn)實(shí)世界的聯(lián)系,增強(qiáng)符號(hào)感,發(fā)展運(yùn)用符號(hào)解決問(wèn)題和數(shù)學(xué)探究意識(shí). 教法學(xué)法:教學(xué)方法:引導(dǎo)—探究—發(fā)現(xiàn)法.學(xué)習(xí)方法:自主探究與合作交流相結(jié)合.課前準(zhǔn)備:多媒體課件、投影儀、電腦教學(xué)過(guò)程:一、創(chuàng)設(shè)情境,引入新課.欣賞視頻,導(dǎo)入新課師:國(guó)慶六十周年大閱兵,同學(xué)們看了嗎?首先請(qǐng)同學(xué)們來(lái)欣賞一段視頻.(26秒.定格在胡錦濤主席乘坐紅旗轎車閱兵的一個(gè)瞬間.)師:這是新中國(guó)成立以來(lái),規(guī)模最大、裝備最新、機(jī)械化程度最高的一次大閱兵.

. 一個(gè)數(shù)的倒數(shù)等于它本身的數(shù)是()A.1 B. C.±1 D.04. 下列判斷錯(cuò)誤的是()A.任何數(shù)的絕對(duì)值一定是非負(fù)數(shù); B.一個(gè)負(fù)數(shù)的絕對(duì)值一定是正數(shù);C.一個(gè)正數(shù)的絕對(duì)值一定是正數(shù); D.一個(gè)數(shù)不是正數(shù)就是負(fù)數(shù);5. 有理數(shù)a、b、c在數(shù)軸上的位置如圖所示則下列結(jié)論正確的是()A.a(chǎn)>b>0>c B.b>0>a>cC.b<a<0< D.a(chǎn)<b<c<06.兩個(gè)有理數(shù)的和是正數(shù),積是負(fù)數(shù),則這兩個(gè)有理數(shù)( )A.都是正數(shù); B.都是負(fù)數(shù); C.一正一負(fù),且正數(shù)的絕對(duì)值較大; D.一正一負(fù),且負(fù)數(shù)的絕對(duì)值較大。7.若│a│=8,│b│=5,且a + b>0,那么a-b的值是( )A.3或13 B.13或-13 C.3或-3 D.-3或-138. 大于-1999而小于2000的所有整數(shù)的和是()A.-1999 B.-1998 C.1999 D.20009. 當(dāng)n為正整數(shù)時(shí), 的值是()

4、 填表:相反數(shù) 絕對(duì)值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對(duì)值是6 , 1.2 , 0 的數(shù)6、 計(jì)算:(1) (2) 五、探究學(xué)習(xí)1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請(qǐng)通過(guò)列式計(jì)算回答下列兩個(gè)問(wèn)題:(1) 這個(gè)人乘車一共行駛了多少千米?(2) 這個(gè)人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對(duì)值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結(jié)一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒(méi)有踏出這塊土地,但我們說(shuō),它付出了艱辛和汗水,因?yàn)樗哌^(guò) 的距離之和,有時(shí)候我們是無(wú)法 想象的。這就是今天所學(xué)的絕對(duì)值的意義所在。所以絕對(duì)值是不考慮方向意義時(shí)的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應(yīng)的部分。

本節(jié)課采取了開(kāi)門見(jiàn)山的切入方法,旨在激發(fā)學(xué)生的求知欲望,在學(xué)生已有的認(rèn)識(shí)基礎(chǔ)上,讓學(xué)生經(jīng)歷了“觀察、思考、探究、實(shí)踐”的過(guò)程。在總結(jié)出同類項(xiàng)定義后,沒(méi)有按通常的做法,即直接分析定義中的兩個(gè)條件,強(qiáng)調(diào)兩個(gè)條件缺一不可,而是通過(guò)一組練習(xí),讓學(xué)生在具體問(wèn)題中體會(huì)定義中的兩個(gè)條件缺一不可,使他們先有較強(qiáng)烈的感性認(rèn)識(shí),而后,分析定義中的兩個(gè)條件,這樣會(huì)給學(xué)生留下更深刻、更牢固的印象.這樣的設(shè)計(jì)既符合學(xué)生的年齡特征,也符合“從感性到理性、從具體到抽象”的認(rèn)知規(guī)律。數(shù)學(xué)不應(yīng)只強(qiáng)調(diào)抽象、嚴(yán)謹(jǐn),這樣不但會(huì)更顯數(shù)學(xué)教學(xué)的枯燥,而且會(huì)使學(xué)生在學(xué)習(xí)中出現(xiàn)畏難情緒,甚至喪失學(xué)習(xí)數(shù)學(xué)的興趣。通過(guò)本節(jié)課的教學(xué),我認(rèn)為還存在一些不足,一部分學(xué)生的學(xué)習(xí)能力還有待于進(jìn)一步培養(yǎng)。如:學(xué)習(xí)同類項(xiàng)的概念時(shí),當(dāng)把字母順序進(jìn)行改變后,部分學(xué)生就認(rèn)為不是同類項(xiàng)。

三、課堂檢測(cè):(一)、判斷題(是一無(wú)二次方程的在括號(hào)內(nèi)劃“√”,不是一元二次方程的,在括號(hào)內(nèi)劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數(shù)) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項(xiàng)是__________,一次項(xiàng)是__________,常數(shù)項(xiàng)是__________.2.如果方程ax2+5=(x+2)(x-1)是關(guān)于x的一元二次方程,則a__________.3.關(guān)于x的方程(m-4)x2+(m+4)x+2m+3=0,當(dāng)m__________時(shí),是一元二次方程,當(dāng)m__________時(shí),是一元一次方程。四、學(xué)習(xí)體會(huì):五、課后作業(yè)

(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況

二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當(dāng)x=______時(shí),代數(shù)式x2-8x+12的值是-4.3.若關(guān)于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關(guān)于x的方程:x2-2ax-b2+a2=0.2.設(shè)x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導(dǎo)x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個(gè)月用電量不超過(guò)A千瓦時(shí),那么這戶居民這個(gè)月只交10元電費(fèi),如果超過(guò)A千瓦時(shí),那么這個(gè)月除了交10元用電費(fèi)外超過(guò)部分還要按每千瓦時(shí) 元收費(fèi).(1)若某戶2月份用電90千瓦時(shí),超過(guò)規(guī)定A千瓦時(shí),則超過(guò)部分電費(fèi)為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費(fèi)情況

探索1:上節(jié)我們列出了與地毯的花邊寬度有關(guān)的方程。地毯花邊的寬x(m),滿足方程 (8―2x)(5―2x)=18也就是:2x2―13x+11=0你能估算出地毯花邊的寬度x嗎?(1)x可能小于0嗎?說(shuō)說(shuō)你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動(dòng)的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動(dòng)距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進(jìn)一步計(jì)算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當(dāng)堂訓(xùn)練:完成課本34頁(yè)隨堂練習(xí)四、學(xué)習(xí)體會(huì):五、課后作業(yè)

1.會(huì)用二次根式的四則運(yùn)算法則進(jìn)行簡(jiǎn)單地運(yùn)算;(重點(diǎn))2.靈活運(yùn)用二次根式的乘法公式.(難點(diǎn))一、情境導(dǎo)入下面正方形的邊長(zhǎng)分別是多少?這兩個(gè)數(shù)之間有什么關(guān)系,你能借助什么運(yùn)算法則或運(yùn)算律解釋它?二、合作探究探究點(diǎn)一:二次根式的乘除運(yùn)算【類型一】 二次根式的乘法計(jì)算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個(gè)二次根式相乘,把它們的被開(kāi)方數(shù)相乘,根指數(shù)不變,如果積含有能開(kāi)得盡方的因數(shù)或因式,一定要化簡(jiǎn).【類型二】 二次根式的除法計(jì)算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

方法總結(jié):(1)若被開(kāi)方數(shù)中含有負(fù)因數(shù),則應(yīng)先化成正因數(shù),如(3)題.(2)將二次根式盡量化簡(jiǎn),使被開(kāi)方數(shù)(式)中不含能開(kāi)得盡方的因數(shù)(因式),即化為最簡(jiǎn)二次根式(后面學(xué)到).探究點(diǎn)三:最簡(jiǎn)二次根式在二次根式8a,c9,a2+b2,a2中,最簡(jiǎn)二次根式共有()A.1個(gè) B.2個(gè)C.3個(gè) D.4個(gè)解析:8a中有因數(shù)4;c9中有分母9;a3中有因式a2.故最簡(jiǎn)二次根式只有a2+b2.故選A.方法總結(jié):只需檢驗(yàn)被開(kāi)方數(shù)是否還有分母,是否還有能開(kāi)得盡方的因數(shù)或因式.三、板書設(shè)計(jì)二次根式定義形如a(a≥0)的式子有意義的條件:a≥0性質(zhì):(a)2=a(a≥0),a2=a(a≥0)最簡(jiǎn)二次根式本節(jié)經(jīng)歷從具體實(shí)例到一般規(guī)律的探究過(guò)程,運(yùn)用類比的方法,得出實(shí)數(shù)運(yùn)算律和運(yùn)算法則,使學(xué)生清楚新舊知識(shí)的區(qū)別和聯(lián)系,加深學(xué)生對(duì)運(yùn)算法則的理解,能否根據(jù)問(wèn)題的特點(diǎn),選擇合理、簡(jiǎn)便的算法,能否確認(rèn)結(jié)果的合理性等等.

8.一束光線從點(diǎn)A(3,3)出發(fā),經(jīng)過(guò)y軸上點(diǎn)C反射后經(jīng)過(guò)點(diǎn)B(1,0)則光線從A點(diǎn)到B點(diǎn)經(jīng)過(guò)的路線長(zhǎng)是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , y)2、關(guān)于x軸對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(x , - y)3、關(guān)于原點(diǎn)對(duì)稱的兩個(gè)圖形上點(diǎn)的坐標(biāo)特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習(xí)題3.5 1,2,3四、 教學(xué)反思通過(guò)“坐標(biāo)與軸對(duì)稱”,經(jīng)歷圖形坐標(biāo)變化與圖形的軸對(duì)稱之間的關(guān)系的探索過(guò)程, 掌握空間與圖形的基礎(chǔ)知識(shí)和基本技能,豐富對(duì)現(xiàn)實(shí)空間及圖形的認(rèn)識(shí),建立初步的空間觀念,發(fā)展形象思維,激發(fā)學(xué)生對(duì)數(shù)學(xué)學(xué)習(xí)的好奇心與求知欲,學(xué)生能積極參與數(shù)學(xué)學(xué)習(xí)活動(dòng);積極交流合作,體驗(yàn)數(shù)學(xué)活動(dòng)充滿著探索與創(chuàng)造。教學(xué)中務(wù)必給學(xué)生創(chuàng)造自主學(xué)習(xí)與合作交流的機(jī)會(huì),留給學(xué)生充足的動(dòng)手機(jī)會(huì)和思考空間,教師不要急于下結(jié)論。事先一定要準(zhǔn)備好坐標(biāo)紙等,提高課堂效率。

解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問(wèn)題中的相等關(guān)系:兩個(gè)人同地背向而行:相遇問(wèn)題(首次相遇),甲的行程+乙的行程=一圈周長(zhǎng);兩個(gè)人同地同向而行:追及問(wèn)題(首次追上),甲的行程-乙的行程=一圈周長(zhǎng).三、板書設(shè)計(jì)追趕小明→行程問(wèn)題→相遇問(wèn)題追及問(wèn)題環(huán)形問(wèn)題教學(xué)過(guò)程中,通過(guò)對(duì)開(kāi)放性問(wèn)題的探討與交流,體驗(yàn)生活中數(shù)學(xué)的應(yīng)用與價(jià)值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識(shí)、團(tuán)隊(duì)精神和克服困難的勇氣.

解:設(shè)需要剪去的小正方形邊長(zhǎng)為xcm,則紙盒底面的長(zhǎng)方形的長(zhǎng)為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當(dāng)?shù)卦O(shè)出未知數(shù),準(zhǔn)確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應(yīng)根據(jù)實(shí)際需求,注明自變量的取值范圍.三、板書設(shè)計(jì)一元二次方程概念:只含有一個(gè)未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常 數(shù),a≠0),其中ax2,bx,c 分別稱為二次項(xiàng)、一次項(xiàng)和 常數(shù)項(xiàng),a,b分別稱為二次 項(xiàng)系數(shù)和一次項(xiàng)系數(shù)本課通過(guò)豐富的實(shí)例,讓學(xué)生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會(huì)方程的模型思想.通過(guò)本節(jié)課的學(xué)習(xí),應(yīng)該讓學(xué)生進(jìn)一步體會(huì)一元二次方程也是刻畫現(xiàn)實(shí)世界的一個(gè)有效數(shù)學(xué)模型,初步培養(yǎng)學(xué)生的數(shù)學(xué)來(lái)源于實(shí)踐又反過(guò)來(lái)作用于實(shí)踐的辯證唯物主義觀點(diǎn),激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣.

∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.三、板書設(shè)計(jì)用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學(xué)生合情合理的推理能力,并認(rèn)識(shí)到配方法是理解求根公式的基礎(chǔ).通過(guò)對(duì)求根公式的推導(dǎo),認(rèn)識(shí)到一元二次方程的求根公式適用于所有的一元二次方程,操作簡(jiǎn)單.體會(huì)數(shù)式通性,感受數(shù)學(xué)的嚴(yán)謹(jǐn)性和數(shù)學(xué)結(jié)論的確定性.提高學(xué)生的運(yùn)算能力,并養(yǎng)成良好的運(yùn)算習(xí)慣.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。