
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.

6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖?!逧,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

高斯(Gauss,1777-1855),德國數學家,近代數學的奠基者之一. 他在天文學、大地測量學、磁學、光學等領域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數列:1,2,3,…,n,"… " 前100項的和問題.等差數列中,下標和相等的兩項和相等.設 an=n,則 a1=1,a2=2,a3=3,…如果數列{an} 是等差數列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數的奇偶進行分類討論.當n為偶數時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數數時, n-1為偶數

導語在必修第一冊中,我們研究了函數的單調性,并利用函數單調性等知識,定性的研究了一次函數、指數函數、對數函數增長速度的差異,知道“對數增長” 是越來越慢的,“指數爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內的平均速度v ?近似的描述它的運動狀態(tài)。

求函數的導數的策略(1)先區(qū)分函數的運算特點,即函數的和、差、積、商,再根據導數的運算法則求導數;(2)對于三個以上函數的積、商的導數,依次轉化為“兩個”函數的積、商的導數計算.跟蹤訓練1 求下列函數的導數:(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數的導數(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數的導數;c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

由樣本相關系數??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結1.線性相關系數是從數值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數要精細得多,需要注意的是線性相關系數r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內收入的總和)與A商品銷售額的10年數據,如表所示.畫出散點圖,判斷成對樣本數據是否線性相關,并通過樣本相關系數推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數的2倍,直到第64個格子.請給我足夠的麥粒以實現上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質量為40克,據查,2016--2017年度世界年度小麥產量約為7.5億噸,根據以上數據,判斷國王是否能實現他的諾言.問題1:每個格子里放的麥粒數可以構成一個數列,請判斷分析這個數列是否是等比數列?并寫出這個等比數列的通項公式.是等比數列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數學問題.

二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數列表示各正方形的面積,根據條件可知,這是一個等比數列。解:設正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數列.設{a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數,結果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

3.下結論.依據均值和方差做出結論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據得到的結論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

對于離散型隨機變量,可以由它的概率分布列確定與該隨機變量相關事件的概率。但在實際問題中,有時我們更感興趣的是隨機變量的某些數字特征。例如,要了解某班同學在一次數學測驗中的總體水平,很重要的是看平均分;要了解某班同學數學成績是否“兩極分化”則需要考察這個班數學成績的方差。我們還常常希望直接通過數字來反映隨機變量的某個方面的特征,最常用的有期望與方差.二、 探究新知探究1.甲乙兩名射箭運動員射中目標靶的環(huán)數的分布列如下表所示:如何比較他們射箭水平的高低呢?環(huán)數X 7 8 9 10甲射中的概率 0.1 0.2 0.3 0.4乙射中的概率 0.15 0.25 0.4 0.2類似兩組數據的比較,首先比較擊中的平均環(huán)數,如果平均環(huán)數相等,再看穩(wěn)定性.假設甲射箭n次,射中7環(huán)、8環(huán)、9環(huán)和10環(huán)的頻率分別為:甲n次射箭射中的平均環(huán)數當n足夠大時,頻率穩(wěn)定于概率,所以x穩(wěn)定于7×0.1+8×0.2+9×0.3+10×0.4=9.即甲射中平均環(huán)數的穩(wěn)定值(理論平均值)為9,這個平均值的大小可以反映甲運動員的射箭水平.同理,乙射中環(huán)數的平均值為7×0.15+8×0.25+9×0.4+10×0.2=8.65.

課前小測1.思考辨析(1)若Sn為等差數列{an}的前n項和,則數列Snn也是等差數列.( )(2)若a1>0,d<0,則等差數列中所有正項之和最大.( )(3)在等差數列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數為2n+1的等差數列中,所有奇數項的和為165,所有偶數項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數依次排成一列,構成數列{an} ,設數列{an} 的前n項和為S_n。

1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數f (x)在這個區(qū)間上單調遞減. ( )(2)函數在某一點的導數越大,函數在該點處的切線越“陡峭”. ( )(3)函數在某個區(qū)間上變化越快,函數在這個區(qū)間上導數的絕對值越大.( )(4)判斷函數單調性時,在區(qū)間內的個別點f ′(x)=0,不影響函數在此區(qū)間的單調性.( )[解析] (1)√ 函數f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數f (x)在這個區(qū)間上單調遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關,故錯誤.(3)√ 函數在某個區(qū)間上變化的快慢,和函數導數的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數f (x)在區(qū)間內單調遞增(減),故f ′(x)=0不影響函數單調性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導數判斷下列函數的單調性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數在R上單調遞增,如圖(1)所示

一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數值變量,數值變量的取值為實數.其大小和運算都有實際含義.在現實生活中,人們經常需要回答一定范圍內的兩種現象或性質之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經常會使用一種特殊的隨機變量,以區(qū)別不同的現象或性質,這類隨機變量稱為分類變量.分類變量的取值可以用實數表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.

溫故知新 1.離散型隨機變量的定義可能取值為有限個或可以一一列舉的隨機變量,我們稱為離散型隨機變量.通常用大寫英文字母表示隨機變量,例如X,Y,Z;用小寫英文字母表示隨機變量的取值,例如x,y,z.隨機變量的特點: 試驗之前可以判斷其可能出現的所有值,在試驗之前不可能確定取何值;可以用數字表示2、隨機變量的分類①離散型隨機變量:X的取值可一、一列出;②連續(xù)型隨機變量:X可以取某個區(qū)間內的一切值隨機變量將隨機事件的結果數量化.3、古典概型:①試驗中所有可能出現的基本事件只有有限個;②每個基本事件出現的可能性相等。二、探究新知探究1.拋擲一枚骰子,所得的點數X有哪些值?取每個值的概率是多少? 因為X取值范圍是{1,2,3,4,5,6}而且"P(X=m)"=1/6,m=1,2,3,4,5,6.因此X分布列如下表所示

1.對稱性與首末兩端“等距離”的兩個二項式系數相等,即C_n^m=C_n^(n"-" m).2.增減性與最大值 當k(n+1)/2時,C_n^k隨k的增加而減小.當n是偶數時,中間的一項C_n^(n/2)取得最大值;當n是奇數時,中間的兩項C_n^((n"-" 1)/2) 與C_n^((n+1)/2)相等,且同時取得最大值.探究2.已知(1+x)^n =C_n^0+C_n^1 x+...〖+C〗_n^k x^k+...+C_n^n x^n 3.各二項式系數的和C_n^0+C_n^1+C_n^2+…+C_n^n=2n.令x=1 得(1+1)^n=C_n^0+C_n^1 +...+C_n^n=2^n所以,(a+b)^n 的展開式的各二項式系數之和為2^n1. 在(a+b)8的展開式中,二項式系數最大的項為 ,在(a+b)9的展開式中,二項式系數最大的項為 . 解析:因為(a+b)8的展開式中有9項,所以中間一項的二項式系數最大,該項為C_8^4a4b4=70a4b4.因為(a+b)9的展開式中有10項,所以中間兩項的二項式系數最大,這兩項分別為C_9^4a5b4=126a5b4,C_9^5a4b5=126a4b5.答案:1.70a4b4 126a5b4與126a4b5 2. A=C_n^0+C_n^2+C_n^4+…與B=C_n^1+C_n^3+C_n^5+…的大小關系是( )A.A>B B.A=B C.A<B D.不確定 解析:∵(1+1)n=C_n^0+C_n^1+C_n^2+…+C_n^n=2n,(1-1)n=C_n^0-C_n^1+C_n^2-…+(-1)nC_n^n=0,∴C_n^0+C_n^2+C_n^4+…=C_n^1+C_n^3+C_n^5+…=2n-1,即A=B.答案:B

1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經驗確定非線性經驗回歸方程的模型;3.通過變換,將非線性經驗回歸模型轉化為線性經驗回歸模型;4.按照公式計算經驗回歸方程中的參數,得到經驗回歸方程;5.消去新元,得到非線性經驗回歸方程;6.得出結果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產卵數y與一定范圍內的溫度x有關,現收集了6組觀測數據列于表中: 經計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數據中的溫度和產卵數,i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產卵數.(結果取整數).

(2) 請你結合上述兩幅漫畫,對這一行為進行簡要評析。15.某校七年級組織學生以“孝親敬長”為主題開展手抄報評比活動。下面是某 同學手抄報的部分內容,請你閱讀并參與完成相關問題。[我的感受]在人世間,最美的旅行是回家。無論走得多遠,每個游子的心里也都有一個 歸家的夢!回家的感覺真好!(1) 結合所學的知識,分析說明“回家真好”的原因是什么?[我的思考]調查顯示:在當今家庭中,許多孩子不要父母過多干涉他們的學習和生活, 很多同齡人有被父母偷看過 QQ、微信聊天記錄和日記的經歷……(2) 針對調查顯示的問題,你認為應怎樣做才能處理好親子之間的沖突?[我的鑒賞]人生最美好的事,莫過于我長大,你未老。我有能力報答,你仍然健康。父 母之愛,兒女即使用一輩子也是報答不完的。

一、單項選擇題1.C 此題考查生命的特點,AD 選項前面說的都對,但是后面說的都不對。因為: 人生難免風險、挫折和坎坷,是逃離不了的,拒絕不了的。生命是獨特的,不能 相互替代,所以 B 也是錯的。C 符合題意正確。 2.①②③都體現對生命的尊重和敬畏,而④表達的是一種消極避世的人生態(tài)度 ; 因此錯了。所以,正確答案 D。3.最美逆行不是沒有安全意識,相反,他們能做到敬畏生命,堅持生命至上。因 此,②選項錯了,其他選項都符合題意。所以正確答案是 D。4. (1) 主題是:敬畏生命(2) 圖 1,祭奠生命,表達對逝者的追悼和懷念。這么做是為了悼念生命,體 現對生命的尊重,體會生命之間是息息相關的。圖 2,生命是崇高的、神圣的,是任何代價都換取不來的。我們對生命要有一種 敬畏的情懷。

B 等級——較積極參與采訪活動;采訪思路較清晰,記錄較完整;能對自己的生 命觀、價值觀有所反思;能主動展示心得體會。C 等級——基本上能參與采訪活動,遇到困難會想放棄;記錄信息較少,只有少 量與主題有關;對自己生命觀、價值觀理解不深;有一點成果反饋,內容過于簡 單。總體評價結果: (四) 作業(yè)分析與設計意圖這是一項基于素質教育導向的整體式課時作業(yè)設計,以培養(yǎng)學生核心素養(yǎng)為 目標。作業(yè)以學生的“生命故事訪談”為主要情境,以填寫活動記錄的形式呈現。 教師從“參與態(tài)度、思想認識”等四個維度對作業(yè)進行評價,以“優(yōu)秀、 良好、 合格”三個等級呈現。本次實踐性作業(yè)是訪談型作業(yè),課前采訪希望通過學生的 參與,一方面鍛煉學生的人際交往能力和口頭語言表達能力,另一方面擴展學生 的生活閱歷,從他人的精彩故事中獲得啟示,激發(fā)學生對生命的熱情,樹立正確 的人生觀,同時也為下一框題的“平凡與偉大”提供教學素材,活出自己生命的 精彩。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。