
1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關(guān)系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經(jīng)觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內(nèi)總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內(nèi)所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內(nèi)的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.

6.例二:如圖在正方體ABCD-A’B’C’D’中,O’為底面A’B’C’D’的中心,求證:AO’⊥BD 證明:如圖,連接B’D’,∵ABCD-A’B’C’D’是正方體∴BB’//DD’,BB’=DD’∴四邊形BB’DD’是平行四邊形∴B’D’//BD∴直線AO’與B’D’所成角即為直線AO’與BD所成角連接AB’,AD’易證AB’=AD’又O’為底面A’B’C’D’的中心∴O’為B’D’的中點∴AO’⊥B’D’,AO’⊥BD7.例三如圖所示,四面體A-BCD中,E,F(xiàn)分別是AB,CD的中點.若BD,AC所成的角為60°,且BD=AC=2.求EF的長度.解:取BC中點O,連接OE,OF,如圖。∵E,F分別是AB,CD的中點,∴OE//AC且OE=1/2AC,OF//AC且OF=1/2BD,∴OE與OF所成的銳角就是AC與BD所成的角∵BD,AC所成角為60°,∴∠EOF=60°或120°∵BD=AC=2,∴OE=OF=1當∠EOF=60°時,EF=OE=OF=1,當∠EOF=120°時,取EF的中點M,連接OM,則OM⊥EF,且∠EOM=60°∴EM= ,∴EF=2EM=

在這段教學(xué)中可以插入世界主要鐵礦、煤礦,以及我國主要的礦產(chǎn)基地、鋼鐵生產(chǎn)基地的相關(guān)內(nèi)容,不失為區(qū)域地理知識的很好補充和鞏固。那么從現(xiàn)狀來看我國的鋼鐵產(chǎn)業(yè)基地多數(shù)污染較為嚴重,可見工業(yè)區(qū)位的選擇同樣要顧及到環(huán)境的因素,由此引入下一部分的內(nèi)容。除了傳統(tǒng)意義上的工業(yè)區(qū)位因素外,環(huán)境、政策以及決策者的理念和心理等日益受到人們的關(guān)注。在這段文字的處理上,只需進行概念、道理上的陳述即可,重點要放在污染工業(yè)在城市中的布局這一知識點上。首先要了解什么工業(yè)會造成怎樣的污染,然后根據(jù)污染的類別分別講解不同的應(yīng)對方略,最后將配以適當?shù)睦}以期提高學(xué)生的整體把握程度和綜合運用能力。最后將對本節(jié)內(nèi)容進行小結(jié),要在小結(jié)中闡述清楚本節(jié)課的兩大內(nèi)容:即工業(yè)的區(qū)位因素和工業(yè)區(qū)位的選擇。然后點明本節(jié)課的主要知識點、難點、重點。在時間允許的情況下可以適當安排幾道有關(guān)主導(dǎo)產(chǎn)業(yè)和城市工業(yè)布局的例題加以練習(xí)。

培養(yǎng)學(xué)生合作交流意識和探究問題的能力,這一部分知識層層遞進,符合學(xué)生由特殊到一般、由簡單到復(fù)雜的認知規(guī)律。4、互動探究(1)極限思想的滲透讓學(xué)生閱讀“思考與討論”小版塊.培養(yǎng)學(xué)生的自學(xué)和閱讀能力提出下列問題,進行分組討論:a、用課本上的方法估算位移,其結(jié)果比實際位移大還是???為什么?b、為了提高估算的精確度,時間間隔小些好還是大些好?為什么?針對學(xué)生回答的多種可能性加以評價和進一步指導(dǎo)。讓學(xué)生從討論的結(jié)果中歸納得出:△t越小,對位移的估算就越精確。滲透極限的思想。通過小組內(nèi)分工合作,討論交流,培養(yǎng)學(xué)生交流合作的精神,以及搜集信息、處理信息的能力;通過小組間對比總結(jié),使學(xué)生學(xué)會在對比中發(fā)現(xiàn)問題,在解決問題過程中提高個人能力;

設(shè)計意圖:幾道例題及練習(xí)題,其中例1小車由靜止啟動開始行駛,以加速度 做勻加速運動,求2s后的速度大???進而變式到:小車遇到紅燈剎車……,充分體現(xiàn)了“從生活到物理,從物理到社會”的物理教學(xué)理念;例題及練習(xí)題由淺入深、由易到難、各有側(cè)重,體現(xiàn)新課標提出的讓不同的學(xué)生在物理上得到不同發(fā)展的教學(xué)理念。這一環(huán)節(jié)總的設(shè)計意圖是反饋教學(xué),內(nèi)化知識。(6) 小結(jié)歸納,拓展深化我的理解是,小結(jié)歸納不應(yīng)該僅僅是知識的簡單羅列,而應(yīng)該是優(yōu)化認知結(jié)構(gòu),完善知識體系的一種有效手段,為充分發(fā)揮學(xué)生的主題作用,從學(xué)習(xí)的知識、方法、體驗是那個方面進行歸納,我設(shè)計了這么三個問題:① 通過本節(jié)課的學(xué)習(xí),你學(xué)會了哪些知識;② 通過本節(jié)課的學(xué)習(xí),你最大的體驗是什么;③ 通過本節(jié)課的學(xué)習(xí),你掌握了哪些學(xué)習(xí)物理的方法?

高斯(Gauss,1777-1855),德國數(shù)學(xué)家,近代數(shù)學(xué)的奠基者之一. 他在天文學(xué)、大地測量學(xué)、磁學(xué)、光學(xué)等領(lǐng)域都做出過杰出貢獻. 問題1:為什么1+100=2+99=…=50+51呢?這是巧合嗎?試從數(shù)列角度給出解釋.高斯的算法:(1+100)+(2+99)+…+(50+51)= 101×50=5050高斯的算法實際上解決了求等差數(shù)列:1,2,3,…,n,"… " 前100項的和問題.等差數(shù)列中,下標和相等的兩項和相等.設(shè) an=n,則 a1=1,a2=2,a3=3,…如果數(shù)列{an} 是等差數(shù)列,p,q,s,t∈N*,且 p+q=s+t,則 ap+aq=as+at 可得:a_1+a_100=a_2+a_99=?=a_50+a_51問題2: 你能用上述方法計算1+2+3+… +101嗎?問題3: 你能計算1+2+3+… +n嗎?需要對項數(shù)的奇偶進行分類討論.當n為偶數(shù)時, S_n=(1+n)+[(2+(n-1)]+?+[(n/2+(n/2-1)]=(1+n)+(1+n)…+(1+n)=n/2 (1+n) =(n(1+n))/2當n為奇數(shù)數(shù)時, n-1為偶數(shù)

二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學(xué)問題.

我們知道數(shù)列是一種特殊的函數(shù),在函數(shù)的研究中,我們在理解了函數(shù)的一般概念,了解了函數(shù)變化規(guī)律的研究內(nèi)容(如單調(diào)性,奇偶性等)后,通過研究基本初等函數(shù)不僅加深了對函數(shù)的理解,而且掌握了冪函數(shù),指數(shù)函數(shù),對數(shù)函數(shù),三角函數(shù)等非常有用的函數(shù)模型。類似地,在了解了數(shù)列的一般概念后,我們要研究一些具有特殊變化規(guī)律的數(shù)列,建立它們的通項公式和前n項和公式,并應(yīng)用它們解決實際問題和數(shù)學(xué)問題,從中感受數(shù)學(xué)模型的現(xiàn)實意義與應(yīng)用,下面,我們從一類取值規(guī)律比較簡單的數(shù)列入手。新知探究1.北京天壇圜丘壇,的地面有十板布置,最中間是圓形的天心石,圍繞天心石的是9圈扇環(huán)形的石板,從內(nèi)到外各圈的示板數(shù)依次為9,18,27,36,45,54,63,72,81 ①2.S,M,L,XL,XXL,XXXL型號的女裝上對應(yīng)的尺碼分別是38,40,42,44,46,48 ②3.測量某地垂直地面方向上海拔500米以下的大氣溫度,得到從距離地面20米起每升高100米處的大氣溫度(單位℃)依次為25,24,23,22,21 ③

二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

情景導(dǎo)學(xué)古語云:“勤學(xué)如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應(yīng)安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設(shè)數(shù)列{an} 的前n項和為S_n。

1.判斷正誤(正確的打“√”,錯誤的打“×”)(1)函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,則函數(shù)f (x)在這個區(qū)間上單調(diào)遞減. ( )(2)函數(shù)在某一點的導(dǎo)數(shù)越大,函數(shù)在該點處的切線越“陡峭”. ( )(3)函數(shù)在某個區(qū)間上變化越快,函數(shù)在這個區(qū)間上導(dǎo)數(shù)的絕對值越大.( )(4)判斷函數(shù)單調(diào)性時,在區(qū)間內(nèi)的個別點f ′(x)=0,不影響函數(shù)在此區(qū)間的單調(diào)性.( )[解析] (1)√ 函數(shù)f (x)在區(qū)間(a,b)上都有f ′(x)<0,所以函數(shù)f (x)在這個區(qū)間上單調(diào)遞減,故正確.(2)× 切線的“陡峭”程度與|f ′(x)|的大小有關(guān),故錯誤.(3)√ 函數(shù)在某個區(qū)間上變化的快慢,和函數(shù)導(dǎo)數(shù)的絕對值大小一致.(4)√ 若f ′(x)≥0(≤0),則函數(shù)f (x)在區(qū)間內(nèi)單調(diào)遞增(減),故f ′(x)=0不影響函數(shù)單調(diào)性.[答案] (1)√ (2)× (3)√ (4)√例1. 利用導(dǎo)數(shù)判斷下列函數(shù)的單調(diào)性:(1)f(x)=x^3+3x; (2) f(x)=sinx-x,x∈(0,π); (3)f(x)=(x-1)/x解: (1) 因為f(x)=x^3+3x, 所以f^' (x)=〖3x〗^2+3=3(x^2+1)>0所以f(x)=x^3+3x ,函數(shù)在R上單調(diào)遞增,如圖(1)所示

新知探究我們知道,等差數(shù)列的特征是“從第2項起,每一項與它的前一項的差都等于同一個常數(shù)” 。類比等差數(shù)列的研究思路和方法,從運算的角度出發(fā),你覺得還有怎樣的數(shù)列是值得研究的?1.兩河流域發(fā)掘的古巴比倫時期的泥版上記錄了下面的數(shù)列:9,9^2,9^3,…,9^10; ①100,100^2,100^3,…,100^10; ②5,5^2,5^3,…,5^10. ③2.《莊子·天下》中提到:“一尺之錘,日取其半,萬世不竭.”如果把“一尺之錘”的長度看成單位“1”,那么從第1天開始,每天得到的“錘”的長度依次是1/2,1/4,1/8,1/16,1/32,… ④3.在營養(yǎng)和生存空間沒有限制的情況下,某種細菌每20 min 就通過分裂繁殖一代,那么一個這種細菌從第1次分裂開始,各次分裂產(chǎn)生的后代個數(shù)依次是2,4,8,16,32,64,… ⑤4.某人存入銀行a元,存期為5年,年利率為 r ,那么按照復(fù)利,他5年內(nèi)每年末得到的本利和分別是a(1+r),a〖(1+r)〗^2,a〖(1+r)〗^3,a〖(1+r)〗^4,a〖(1+r)〗^5 ⑥

求函數(shù)的導(dǎo)數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導(dǎo)數(shù)的運算法則求導(dǎo)數(shù);(2)對于三個以上函數(shù)的積、商的導(dǎo)數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導(dǎo)數(shù)計算.跟蹤訓(xùn)練1 求下列函數(shù)的導(dǎo)數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓(xùn)練2 求下列函數(shù)的導(dǎo)數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導(dǎo)數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

二、典例解析例10. 如圖,正方形ABCD 的邊長為5cm ,取正方形ABCD 各邊的中點E,F,G,H, 作第2個正方形 EFGH,然后再取正方形EFGH各邊的中點I,J,K,L,作第3個正方形IJKL ,依此方法一直繼續(xù)下去. (1) 求從正方形ABCD 開始,連續(xù)10個正方形的面積之和;(2) 如果這個作圖過程可以一直繼續(xù)下去,那么所有這些正方形的面積之和將趨近于多少?分析:可以利用數(shù)列表示各正方形的面積,根據(jù)條件可知,這是一個等比數(shù)列。解:設(shè)正方形的面積為a_1,后續(xù)各正方形的面積依次為a_2, a_(3, ) 〖…,a〗_n,…,則a_1=25,由于第k+1個正方形的頂點分別是第k個正方形各邊的中點,所以a_(k+1)=〖1/2 a〗_k,因此{a_n},是以25為首項,1/2為公比的等比數(shù)列.設(shè){a_n}的前項和為S_n(1)S_10=(25×[1-(1/2)^10 ] )/("1 " -1/2)=50×[1-(1/2)^10 ]=25575/512所以,前10個正方形的面積之和為25575/512cm^2.(2)當無限增大時,無限趨近于所有正方形的面積和

四、說教學(xué)過程:1、導(dǎo)入新課:以視頻形式導(dǎo)入新課,說明環(huán)境問題產(chǎn)生原因,引出人地關(guān)系的重要性2、新課講授:學(xué)習(xí)主題一:過去——人地關(guān)系的歷史回顧以動畫形式展現(xiàn)人地關(guān)系思想的發(fā)展,激發(fā)學(xué)生學(xué)習(xí)本專題的興趣,歸納人與自然關(guān)系的演變過程。學(xué)習(xí)主題二:現(xiàn)狀——直面環(huán)境問題以人類與環(huán)境關(guān)系模式圖說明環(huán)境問題產(chǎn)生的原因,人地關(guān)系實質(zhì);以因果聯(lián)系框圖培養(yǎng)學(xué)生判讀方法,了解人口、資源與環(huán)境三者之間的關(guān)系;通過閱讀課文,了解環(huán)境問題的類型及其空間差異的表現(xiàn);以圖表了解不同國家和地區(qū)環(huán)境問題在空間軸上的表現(xiàn);以《京都議定書》為引子說明保護環(huán)境是全人類的共同使命學(xué)習(xí)主題三:未來——可持續(xù)發(fā)展展示“可持續(xù)發(fā)展示意圖”理解可持續(xù)發(fā)展內(nèi)涵、原則

【教學(xué)目標】知識與技能:理解環(huán)境承載力與環(huán)境人口容量的含義、兩者的關(guān)系以及環(huán)境人口容量的影響因素;理解人口合理容量的含義,影響因素并掌握保持人口合理容量的做法;結(jié)合中國國情提出適合中國保持合理人口容量的措施過程與方法:通過問題探究及案例分析理解環(huán)境承載力與環(huán)境人口容量的關(guān)系及影響因素;通過問題探討掌握保持人口合理容量的措施。情感態(tài)度與價值觀:樹立并強化學(xué)生的可持續(xù)發(fā)展觀念,科學(xué)發(fā)展觀。激發(fā)學(xué)生愛國情感更多地關(guān)注國家國情,樹立主人翁意識保護地球強大祖國?!窘虒W(xué)重點】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施【教學(xué)難點】環(huán)境人口容量的內(nèi)涵以及影響因素人口合理容量的影響因素以及措施二、說教法【教學(xué)方法】案例分析、問題探究、歸納總結(jié)

四、教學(xué)過程1.導(dǎo)入新課(2分鐘)出示中非合作論壇暨第3屆部長級會議圖片。用時事引起學(xué)生注意,設(shè)問,“55年前,亞洲與非洲有哪一次跨越印度洋的握手”,提示答案“萬隆亞非會議”,給出答案導(dǎo)入新課2.外交環(huán)境:學(xué)生閱讀,教師分析。(3分鐘)3.外交方針之一:獨立自主的和平外交方針(5分鐘) 出示材料:《共同綱領(lǐng)》引文。學(xué)生、閱讀、提煉除新中國奉行獨立自主的外交政策。進而由學(xué)生分析另起爐灶、打掃干凈屋子再請客和一邊倒。培養(yǎng)學(xué)生分析材料、利用材料的能力過度:新中國作出一邊倒大的積極主動態(tài)勢,社會主義陣營的兄弟們也立刻作出了積極回應(yīng)。1949年10月2日,中蘇建立了外交關(guān)系。4.外交建樹之一:同蘇聯(lián)等17個國家建立外交關(guān)系(3分鐘)出示毛澤東訪問蘇聯(lián)等圖片和第一批建交的17個國家名字

四.設(shè)計反思我在設(shè)計本課時,希望通過情境的創(chuàng)設(shè)充分再現(xiàn)歷史,并利用多媒體輔助教學(xué),破重點、化難點,讓學(xué)生主動參與到學(xué)習(xí)過程中,從而突破狹小的教室空間,讓學(xué)生真正做到感知歷史,立足現(xiàn)實,展望未來。自主,交流、合作、探究是課程改革中著力倡導(dǎo)的新型學(xué)習(xí)方式。課堂教學(xué)中如何開展小組合作的探究學(xué)習(xí)存在著很多困難,首先是課堂教學(xué)時間有限,如何體現(xiàn)面向全體,給每個學(xué)生以機會?再次,歷史問題的討論只能依托于史料才能使討論不淪為空談,課堂上通過網(wǎng)絡(luò)提供大量的史料(文字、圖片或其他),勢必不能有充分時間讓學(xué)生閱讀分析。如何解決這些問題呢?措施一:要形成較固定的歷史學(xué)習(xí)合作小組。選定一位同學(xué)擔(dān)任組長,負責(zé)協(xié)調(diào)措施二:要設(shè)置有利于學(xué)生探究的問題情境措施三:要把課堂教學(xué)與課外學(xué)習(xí)結(jié)合起來。在課前就印發(fā)相關(guān)的材料,或引導(dǎo)學(xué)生去查閱相關(guān)的資料,讓學(xué)生有個充分的閱讀、思考、交流的時間,是保證課堂上小組交流能成功實現(xiàn)的一個前提
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。