提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

中班健康活動設計

  • 人教版高中數(shù)學選擇性必修二變化率問題教學設計

    人教版高中數(shù)學選擇性必修二變化率問題教學設計

    導語在必修第一冊中,我們研究了函數(shù)的單調(diào)性,并利用函數(shù)單調(diào)性等知識,定性的研究了一次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)增長速度的差異,知道“對數(shù)增長” 是越來越慢的,“指數(shù)爆炸” 比“直線上升” 快得多,進一步的能否精確定量的刻畫變化速度的快慢呢,下面我們就來研究這個問題。新知探究問題1 高臺跳水運動員的速度高臺跳水運動中,運動員在運動過程中的重心相對于水面的高度h(單位:m)與起跳后的時間t(單位:s)存在函數(shù)關系h(t)=-4.9t2+4.8t+11.如何描述用運動員從起跳到入水的過程中運動的快慢程度呢?直覺告訴我們,運動員從起跳到入水的過程中,在上升階段運動的越來越慢,在下降階段運動的越來越快,我們可以把整個運動時間段分成許多小段,用運動員在每段時間內(nèi)的平均速度v ?近似的描述它的運動狀態(tài)。

  • 人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    人教版高中數(shù)學選修3成對數(shù)據(jù)的相關關系教學設計

    由樣本相關系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關,且相關程度很強。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關系數(shù)是從數(shù)值上來判斷變量間的線性相關程度,是定量的方法.與散點圖相比較,線性相關系數(shù)要精細得多,需要注意的是線性相關系數(shù)r的絕對值小,只是說明線性相關程度低,但不一定不相關,可能是非線性相關.2.利用相關系數(shù)r來檢驗線性相關顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關,并通過樣本相關系數(shù)推斷居民年收入與A商品銷售額的相關程度和變化趨勢的異同.

  • 人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設自變量x從x_0變化到x_0+ ?x ,相應地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式   (1) 教學設計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的前n項和公式 (1) 教學設計

    新知探究國際象棋起源于古代印度.相傳國王要獎賞國際象棋的發(fā)明者,問他想要什么.發(fā)明者說:“請在棋盤的第1個格子里放上1顆麥粒,第2個格子里放上2顆麥粒,第3個格子里放上4顆麥粒,依次類推,每個格子里放的麥粒都是前一個格子里放的麥粒數(shù)的2倍,直到第64個格子.請給我足夠的麥粒以實現(xiàn)上述要求.”國王覺得這個要求不高,就欣然同意了.假定千粒麥粒的質(zhì)量為40克,據(jù)查,2016--2017年度世界年度小麥產(chǎn)量約為7.5億噸,根據(jù)以上數(shù)據(jù),判斷國王是否能實現(xiàn)他的諾言.問題1:每個格子里放的麥粒數(shù)可以構(gòu)成一個數(shù)列,請判斷分析這個數(shù)列是否是等比數(shù)列?并寫出這個等比數(shù)列的通項公式.是等比數(shù)列,首項是1,公比是2,共64項. 通項公式為〖a_n=2〗^(n-1)問題2:請將發(fā)明者的要求表述成數(shù)學問題.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設備,隨著設備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設備將報廢.請確定d的范圍.分析:該設備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設備的價值不小于(220×5%=)11萬元;10年后,該設備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設使用n年后,這臺設備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

  • 人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    人教版高中數(shù)學選擇性必修二數(shù)列的概念(1)教學設計

    情景導學古語云:“勤學如春起之苗,不見其增,日有所長”如果對“春起之苗”每日用精密儀器度量,則每日的高度值按日期排在一起,可組成一個數(shù)列. 那么什么叫數(shù)列呢?二、問題探究1. 王芳從一歲到17歲,每年生日那天測量身高,將這些身高數(shù)據(jù)(單位:厘米)依次排成一列數(shù):75,87,96,103,110,116,120,128,138,145,153,158,160,162,163,165,168 ①記王芳第i歲的身高為 h_i ,那么h_1=75 , h_2=87, 〖"…" ,h〗_17=168.我們發(fā)現(xiàn)h_i中的i反映了身高按歲數(shù)從1到17的順序排列時的確定位置,即h_1=75 是排在第1位的數(shù),h_2=87是排在第2位的數(shù)〖"…" ,h〗_17 =168是排在第17位的數(shù),它們之間不能交換位置,所以①具有確定順序的一列數(shù)。2. 在兩河流域發(fā)掘的一塊泥板(編號K90,約生產(chǎn)于公元前7世紀)上,有一列依次表示一個月中從第1天到第15天,每天月亮可見部分的數(shù):5,10,20,40,80,96,112,128,144,160,176,192,208,224,240. ②

  • 人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    人教版高中數(shù)學選修3離散型隨機變量及其分布列(1)教學設計

    4.寫出下列隨機變量可能取的值,并說明隨機變量所取的值表示的隨機試驗的結(jié)果.(1)一個袋中裝有8個紅球,3個白球,從中任取5個球,其中所含白球的個數(shù)為X.(2)一個袋中有5個同樣大小的黑球,編號為1,2,3,4,5,從中任取3個球,取出的球的最大號碼記為X.(3). 在本例(1)條件下,規(guī)定取出一個紅球贏2元,而每取出一個白球輸1元,以ξ表示贏得的錢數(shù),結(jié)果如何?[解] (1)X可取0,1,2,3.X=0表示取5個球全是紅球;X=1表示取1個白球,4個紅球;X=2表示取2個白球,3個紅球;X=3表示取3個白球,2個紅球.(2)X可取3,4,5.X=3表示取出的球編號為1,2,3;X=4表示取出的球編號為1,2,4;1,3,4或2,3,4.X=5表示取出的球編號為1,2,5;1,3,5;1,4,5;2,3,5;2,4,5或3,4,5.(3) ξ=10表示取5個球全是紅球;ξ=7表示取1個白球,4個紅球;ξ=4表示取2個白球,3個紅球;ξ=1表示取3個白球,2個紅球.

  • 人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    人教版高中數(shù)學選修3離散型隨機變量的方差教學設計

    3.下結(jié)論.依據(jù)均值和方差做出結(jié)論.跟蹤訓練2. A、B兩個投資項目的利潤率分別為隨機變量X1和X2,根據(jù)市場分析, X1和X2的分布列分別為X1 2% 8% 12% X2 5% 10%P 0.2 0.5 0.3 P 0.8 0.2求:(1)在A、B兩個項目上各投資100萬元, Y1和Y2分別表示投資項目A和B所獲得的利潤,求方差D(Y1)和D(Y2);(2)根據(jù)得到的結(jié)論,對于投資者有什么建議? 解:(1)題目可知,投資項目A和B所獲得的利潤Y1和Y2的分布列為:Y1 2 8 12 Y2 5 10P 0.2 0.5 0.3 P 0.8 0.2所以 ;; 解:(2) 由(1)可知 ,說明投資A項目比投資B項目期望收益要高;同時 ,說明投資A項目比投資B項目的實際收益相對于期望收益的平均波動要更大.因此,對于追求穩(wěn)定的投資者,投資B項目更合適;而對于更看重利潤并且愿意為了高利潤承擔風險的投資者,投資A項目更合適.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的前n項和公式(2)教學設計

    課前小測1.思考辨析(1)若Sn為等差數(shù)列{an}的前n項和,則數(shù)列Snn也是等差數(shù)列.( )(2)若a1>0,d<0,則等差數(shù)列中所有正項之和最大.( )(3)在等差數(shù)列中,Sn是其前n項和,則有S2n-1=(2n-1)an.( )[答案] (1)√ (2)√ (3)√2.在項數(shù)為2n+1的等差數(shù)列中,所有奇數(shù)項的和為165,所有偶數(shù)項的和為150,則n等于( )A.9 B.10 C.11 D.12B [∵S奇S偶=n+1n,∴165150=n+1n.∴n=10.故選B項.]3.等差數(shù)列{an}中,S2=4,S4=9,則S6=________.15 [由S2,S4-S2,S6-S4成等差數(shù)列得2(S4-S2)=S2+(S6-S4)解得S6=15.]4.已知數(shù)列{an}的通項公式是an=2n-48,則Sn取得最小值時,n為________.23或24 [由an≤0即2n-48≤0得n≤24.∴所有負項的和最小,即n=23或24.]二、典例解析例8.某校新建一個報告廳,要求容納800個座位,報告廳共有20排座位,從第2排起后一排都比前一排多兩個座位. 問第1排應安排多少個座位?分析:將第1排到第20排的座位數(shù)依次排成一列,構(gòu)成數(shù)列{an} ,設數(shù)列{an} 的前n項和為S_n。

  • 人教版高中數(shù)學選修3分類變量與列聯(lián)表教學設計

    人教版高中數(shù)學選修3分類變量與列聯(lián)表教學設計

    一、 問題導學前面兩節(jié)所討論的變量,如人的身高、樹的胸徑、樹的高度、短跑100m世界紀錄和創(chuàng)紀錄的時間等,都是數(shù)值變量,數(shù)值變量的取值為實數(shù).其大小和運算都有實際含義.在現(xiàn)實生活中,人們經(jīng)常需要回答一定范圍內(nèi)的兩種現(xiàn)象或性質(zhì)之間是否存在關聯(lián)性或相互影響的問題.例如,就讀不同學校是否對學生的成績有影響,不同班級學生用于體育鍛煉的時間是否有差別,吸煙是否會增加患肺癌的風險,等等,本節(jié)將要學習的獨立性檢驗方法為我們提供了解決這類問題的方案。在討論上述問題時,為了表述方便,我們經(jīng)常會使用一種特殊的隨機變量,以區(qū)別不同的現(xiàn)象或性質(zhì),這類隨機變量稱為分類變量.分類變量的取值可以用實數(shù)表示,例如,學生所在的班級可以用1,2,3等表示,男性、女性可以用1,0表示,等等.在很多時候,這些數(shù)值只作為編號使用,并沒有通常的大小和運算意義,本節(jié)我們主要討論取值于{0,1}的分類變量的關聯(lián)性問題.

  • 人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    人教版高中數(shù)學選修3一元線性回歸模型及其應用教學設計

    1.確定研究對象,明確哪個是解釋變量,哪個是響應變量;2.由經(jīng)驗確定非線性經(jīng)驗回歸方程的模型;3.通過變換,將非線性經(jīng)驗回歸模型轉(zhuǎn)化為線性經(jīng)驗回歸模型;4.按照公式計算經(jīng)驗回歸方程中的參數(shù),得到經(jīng)驗回歸方程;5.消去新元,得到非線性經(jīng)驗回歸方程;6.得出結(jié)果后分析殘差圖是否有異常 .跟蹤訓練1.一只藥用昆蟲的產(chǎn)卵數(shù)y與一定范圍內(nèi)的溫度x有關,現(xiàn)收集了6組觀測數(shù)據(jù)列于表中: 經(jīng)計算得: 線性回歸殘差的平方和: ∑_(i=1)^6?〖(y_i-(y_i ) ?)〗^2=236,64,e^8.0605≈3167.其中 分別為觀測數(shù)據(jù)中的溫度和產(chǎn)卵數(shù),i=1,2,3,4,5,6.(1)若用線性回歸模型擬合,求y關于x的回歸方程 (精確到0.1);(2)若用非線性回歸模型擬合,求得y關于x回歸方程為 且相關指數(shù)R2=0.9522. ①試與(1)中的線性回歸模型相比較,用R2說明哪種模型的擬合效果更好 ?②用擬合效果好的模型預測溫度為35℃時該種藥用昆蟲的產(chǎn)卵數(shù).(結(jié)果取整數(shù)).

  • 初中道德與法治七年級上冊成長的節(jié)拍作業(yè)設計

    初中道德與法治七年級上冊成長的節(jié)拍作業(yè)設計

    2.內(nèi)容內(nèi)在邏輯本單元是七年級上冊教材的第一單元, 作為對初中生活開端的理性闡述,具 有統(tǒng)領全套教材的意義。從整體上看, 本單元既是整個初中道德與法治課程的學 習起點, 也是全套教材建構(gòu)的邏輯起點。這個起點包孕了道德與法治課程核心價 值觀的萌芽。第一課《中學時代》也是整個初中生活開始的第一課, 可謂是重中 之重。第一框“中學序曲”共兩課時。 主要引領學生踏著成長的節(jié)拍, 體會角色變 化的意味,了解中學時代對于人生的意義和價值。第二框“少年有夢”共兩課時。主要幫助學生為未來的生活確立嶄新的目標, 編織夢想,建立努力就有改變的生活信念,并且為實現(xiàn)中國夢奠定基礎。(三)學情分析告別小學, 剛跨進中學大門, 開啟一段全新的生命成長旅程。他們朝氣蓬勃、 活力四射、思維活躍, 但是認知能力、思維方式、人格特點及社會經(jīng)驗等都有待 于進一步發(fā)展; 由于每個人的成長經(jīng)歷、個性心理等方面存在差異, 所以他們的 實際表現(xiàn)也各不相同。

  • 初中道德與法治七年級上冊親情之愛2作業(yè)設計

    初中道德與法治七年級上冊親情之愛2作業(yè)設計

    (一) 課標要求本課所依據(jù)的道德與法治課程標準 (2022 年版) 的相應部分如下。1. “政治認同”中的“家國情懷” ,對家庭有深厚的情感。2. “道德修養(yǎng)”中的“家庭美德” ,踐行尊老愛幼、孝親敬長、勤勞節(jié)儉 的道德要求。感念父母養(yǎng)育之恩、長輩關愛之情,能夠以感恩的心與父母和長輩 溝通,能夠為父母分憂解難,做家庭的好成員。3. “健全人格”中的“理性平和” ,開放包容,理性表達意見,能夠換位 思考,學會調(diào)控情緒,調(diào)適“逆反”心理,學會處理與家人間的關系。4. “責任意識”中的“擔當精神” , 自覺分擔家庭責任,體會敬業(yè)精神的 重要性,具有較強的責任感。(二) 教材分析1.思維導圖2. 內(nèi)容內(nèi)在邏輯第七課《親情之愛》是七年級上冊第三單元第二部分內(nèi)容。在介紹與同學、 朋友、老師交往的基礎上,要求學生認識、了解家庭,學會與家人交往。

  • 高教版中職數(shù)學基礎模塊下冊:9.1《平面的基本性質(zhì)》教學設計

    高教版中職數(shù)學基礎模塊下冊:9.1《平面的基本性質(zhì)》教學設計

    課題序號 授課班級 授課課時2授課形式新課授課章節(jié) 名稱§9-1 平面基本性質(zhì)使用教具多媒體課件教學目的1.了解平面的定義、表示法及特點,會用符號表示點、線、面之間的關系—基礎模塊 2.了解平面的基本性質(zhì)和推論,會應用定理和推論解釋生活中的一些現(xiàn)象—基礎模塊 3.會用斜二測畫法畫立體圖形的直觀圖—基礎模塊 4.培養(yǎng)學生的空間想象能力教學重點用適當?shù)姆柋硎军c、線、面之間的關系;會用斜二測畫法畫立體圖形的直觀圖教學難點從平面幾何向立體幾何的過渡,培養(yǎng)學生的空間想象能力.更新補充 刪節(jié)內(nèi)容 課外作業(yè) 教學后記能動手畫,動腦想,但立體幾何的語言及想象能力差

  • 高教版中職數(shù)學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    高教版中職數(shù)學基礎模塊下冊:9.5《柱、錐、球及其簡單組合體》教學設計

    課題序號 授課班級 授課課時2授課形式 教學方法 授課章節(jié) 名稱9.5柱、錐、球及其組合體使用教具 教學目的1、使學生認識柱、錐、球及其組合體的結(jié)構(gòu)特征,并能運用這些特征描述生活中簡單物體的結(jié)構(gòu)。 2、讓學生了解柱、錐、球的側(cè)面積和體積的計算公式。 3、培養(yǎng)學生觀察能力、計算能力。

  • 高教版中職數(shù)學基礎模塊下冊:6.2《等差數(shù)列》教學設計

    高教版中職數(shù)學基礎模塊下冊:6.2《等差數(shù)列》教學設計

    系(部)醫(yī)藥授課教師戚文擷授課班級11(5),11(6)班授課類型新授課授課時數(shù)2課時授課周數(shù)第一周授課日期2012.2.15授課地點 教室課題第六章數(shù)列分課題§6.2 等差數(shù)列教學目標1. 理解等差數(shù)列的概念,掌握等差數(shù)列的通項公式;掌握等差中項的概念. 2. 逐步靈活應用等差數(shù)列的概念和通項公式解決問題. 3.等差數(shù)列的前N項之和 . 4.培養(yǎng)學生分析、比較、歸納的邏輯思維能力. . 2. 3.教學重點等差數(shù)列的概念及其通項公式. 教學難點等差數(shù)列通項公式的靈活運用. 教學方法情境教學法、自主探究式教學方法教學器材及設備黑板、粉筆復習提問提問內(nèi)容姓名成績1.數(shù)列的定義? 答: 2. 數(shù)列的通項公式? 答: 板書設計 §6.2.1等差數(shù)列的概念 1. 1.等差數(shù)列的定義 公差:d 2.常數(shù)列 3.等差數(shù)列的通項公式 an=a1+(n-1)d. 等差數(shù)列的前n 項和公式: 例題 練習作業(yè)布置習題第1,2題.課后小結(jié)本節(jié)課主要采用自主探究式教學方法.充分利用現(xiàn)實情景,盡可能地增加教學過程的趣味性、實踐性.我再整個教學中強調(diào)學生的主動參與,讓學生自己去分析、探索,在探索過程中研究和領悟得出的結(jié)論,從而達到使學生既獲得知識又發(fā)展智能的目的.

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 高教版中職數(shù)學基礎模塊下冊:10.3《總體、樣本與抽樣方法》教學設計

    高教版中職數(shù)學基礎模塊下冊:10.3《總體、樣本與抽樣方法》教學設計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 10.3總體、樣本與抽樣方法(一) *創(chuàng)設情境 興趣導入 【實驗】 商店進了一批蘋果,小王從中任意選取了10個蘋果,編上號并稱出質(zhì)量.得到下面的數(shù)據(jù)(如表10-6所示): 蘋果編號12345678910質(zhì)量(kg)0.210.170.190.160.200.220.210.180.190.17 利用這些數(shù)據(jù),就可以估計出這批蘋果的平均質(zhì)量及蘋果的大小是否均勻. 介紹 質(zhì)疑 講解 說明 了解 思考 啟發(fā) 學生思考 0 10*動腦思考 探索新知 【新知識】 在統(tǒng)計中,所研究對象的全體叫做總體,組成總體的每個對象叫做個體. 上面的實驗中,這批蘋果的質(zhì)量是研究對象的總體,每個蘋果的質(zhì)量是研究的個體. 講解 說明 引領 分析 理解 記憶 帶領 學生 分析 20*鞏固知識 典型例題 【知識鞏固】 例1 研究某班學生上學期數(shù)學期末考試成績,指出其中的總體與個體. 解 該班所有學生的數(shù)學期末考試成績是總體,每一個學生的數(shù)學期末考試成績是個體. 【試一試】 我們經(jīng)常用燈泡的使用壽命來衡量燈炮的質(zhì)量.指出在鑒定一批燈泡的質(zhì)量中的總體與個體. 說明 強調(diào) 引領 觀察 思考 主動 求解 通過例題進一步領會 35

  • 人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    人教A版高中數(shù)學必修二復數(shù)的三角表示教學設計

    本節(jié)內(nèi)容是復數(shù)的三角表示,是復數(shù)與三角函數(shù)的結(jié)合,是對復數(shù)的拓展延伸,這樣更有利于我們對復數(shù)的研究。1.數(shù)學抽象:利用復數(shù)的三角形式解決實際問題;2.邏輯推理:通過課堂探究逐步培養(yǎng)學生的邏輯思維能力;3.數(shù)學建模:掌握復數(shù)的三角形式;4.直觀想象:利用復數(shù)三角形式解決一系列實際問題;5.數(shù)學運算:能夠正確運用復數(shù)三角形式計算復數(shù)的乘法、除法;6.數(shù)據(jù)分析:通過經(jīng)歷提出問題—推導過程—得出結(jié)論—例題講解—練習鞏固的過程,讓學生認識到數(shù)學知識的邏輯性和嚴密性。復數(shù)的三角形式、復數(shù)三角形式乘法、除法法則及其幾何意義舊知導入:問題一:你還記得復數(shù)的幾何意義嗎?問題二:我們知道,向量也可以由它的大小和方向唯一確定,那么能否借助向量的大小和方向這兩個要素來表示復數(shù)呢?如何表示?

  • 人教A版高中數(shù)學必修二平面與平面垂直教學設計

    人教A版高中數(shù)學必修二平面與平面垂直教學設計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大?。?解:由已知PA⊥平面ABC,BC在平面ABC內(nèi)∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內(nèi),∴BC⊥平面PAC又PC在平面PAC內(nèi),∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?

上一頁123...262728293031323334353637下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。