
1、舉例:2、結論:(1)物體的運動軌跡是曲線的運動叫曲線運動。(2)曲線運動中速度方向是時刻改變的。(二)、曲線運動方向:1、質點在某一點(或某一時刻)的速度的方向是在曲線的這一點的切線方向。2、曲線運動中速度方向是時刻改變的,因此曲線運動是變速運動。(三)、曲線運動條件:1、演示實驗:2、結論:當物體所受的合力的方向跟它的速度方向不在同一直線時,物體就做曲線運動。七、課堂小結:1、運動軌跡是曲線的運動叫曲線運動。2、曲線運動中速度的方向是時刻改變的,質點在某一點的瞬時速度的方向在曲線的這一點的切線上。3、當合外力F的方向與它的速度方向有一夾角a時,物體做曲線運動。八、鞏固訓練:1、關于曲線運動,下列說法正確的是()。A:曲線運動一定是變速運動;B:曲線運動速度的方向不斷的變化,但速度的大小可以不變;

學生中存在這樣的問題:既然宇宙間的一切物體都是相互吸引的,那么為什么沒有吸引到一起?為了解決這個問題,安排了例題2例2、兩物體質量都是1kg,相距1m,它們間的萬有引力是多少?通過本題,讓學生認識到一般物體間的引力極小,不用考慮。那么,質量很大的天體為什么沒被吸引到一塊?從而引出下節(jié)課題。4.課堂小結:本節(jié)課,從天體運動出發(fā),通過推理證明,形成理性認識,再結合例題習題使學生的理性認識再反饋到具體事實。形成實踐-理論-實踐的認知循環(huán),順應了認知規(guī)律.。本共設計了很多問,能讓學生想的盡量讓學生想、能學生說的盡量讓學生說、能讓學生做的盡量讓學生做,全面發(fā)展學生的各方面能力。再通過作業(yè)和探究性課題使學生的思維活動在時空上得以延續(xù)。5.布置作業(yè):布置作業(yè)時刻意安排引入:萬有引力、重力、向心力、三者的聯(lián)系,通過引導學生對比結果,從中發(fā)現問題:萬有引力與重力向心力的關系與區(qū)別,為下節(jié)知識的難點突破作好了鋪墊。

了解了第一宇宙速度及其意義之后,繼續(xù)提出問題,讓學生思考:如果衛(wèi)星的發(fā)射速度大于第一宇宙速度7.9km/s ,會出現什么情況呢?先讓學生們大膽猜想,然后再向學生們介紹 衛(wèi)星發(fā)射速度大于第一宇宙速度后的幾種可能情況,引出第二宇宙速度和第三宇宙速度,讓學生對第二、第三宇宙速度及其意義做定性了解。并通過演示Flash課件,幫助學生理解、加深學生印象。在學生對人造衛(wèi)星的原理及發(fā)射衛(wèi)星的速度條件有了初步了解后,接下來引導學生對衛(wèi)星的運動規(guī)律作進一步的探索。實際上衛(wèi)星并不是沿地表水平發(fā)射的,而是用火箭多次加速送到一定的高度的軌道后,再沿以地心為圓心的圓周的切線運行的。讓學生繼續(xù)深入思考:衛(wèi)星在不同高度繞地球運行時的速度怎么求呢?將衛(wèi)星送入低軌道和高軌道所需的速度都一樣么?如果把不同軌道上的衛(wèi)星繞地球的運動都看成是勻速圓周運動,引導學生利用已學的萬有引力和圓周運動的相關知識,探究衛(wèi)星繞地球的運行規(guī)律。

(四)、彈性勢能(據課時情況,可以讓學生自學)生活中還有一些物體既沒有運動也沒有很大的高度卻同樣“儲存”著能量,哪怕它只是孩童手里的玩具(圖片:彈弓)。張緊的弓一撒手就會對箭支做功改變它的動能,松弛的弓有這樣的本領嗎?同樣是弓前者具有能量而后者沒有,那么什么情況下物體才具有這種能量呢?張緊的弓在恢復原狀的過程會對外做功,但是拉斷的弓還能有做功的本領嗎?1.定義:物體由于發(fā)生彈性形變而具有的能量叫做彈性勢能。2.彈性勢能的大小與哪些因素有關呢?3、勢能由相互作用的物體的相對位置決定的能量。重力勢能:由地球和物體間相對位置決定。彈性勢能:由發(fā)生形變的各部分的相對位置決定。(五).反饋練習1. 物體在運動過程中,克服重力做功50J, 則( )A.重力做功為50JB.物體的重力勢能一定增加50JC.物體的重力勢能一定減少50JD.重力做功為-50J

3、工業(yè)革命引起社會關系變化——形成兩大對立的工業(yè)資產階級和無產階級工業(yè)資產階級和工業(yè)無產階級成為社會的兩大階級。工業(yè)資產階級獲得更多的政治權利,各國通過改革,鞏固了資產階級的統(tǒng)治。 4、工業(yè)革命推動資產階級調整內外政策——自由主義與殖民擴張對內,希望進一步擺脫封建束縛,要求自由經營、自由競爭和自由貿易。重商主義被自由放任政策所取代。對外,加快了殖民擴張和殖民掠奪的步伐。三、世界市場的基本形成1、原因條件(1)工業(yè)革命的展開使世界貿易的范圍和規(guī)模迅速擴大1840年前后,英國的大機器工業(yè)基本上取代了工場手工業(yè),率先完成了工業(yè)革命,成為世界上第一個工業(yè)國家。之后,法國和美國等國也相繼完成工業(yè)革命。隨著工業(yè)革命的展開,資產階級竭力在全世界拓展市場,搶占原料產地,使世界貿易的范圍和規(guī)模迅速擴大。

1、教材內容本節(jié)是人教版普通高中標準實驗教科書生物必修2《遺傳與進化》的第五章《基因突變及其他變異》的第一節(jié)內容。本節(jié)介紹了可遺傳變異的兩種類型:基因突變和基因重組,其中基因突變從實例對鐮刀型細胞貧血癥的分析入手,引入基因突變的概念,然后詳細闡述基因突變的原因和特點、意義。在闡述自然狀態(tài)下基因突變的頻率很低時,教材用實例說明在一個足夠大的群體中,即使基因突變頻率很低,突變個體仍然會占有一定的數量。這個實例體現了生物在進化過程中“變”與“不變”的平衡,有助于學生理解基因突變在生物進化中所占有的重要地位。在基因重組部分,教材設置了“思考與討論“的欄目,旨在讓學生利用數學方法,通過計算,體會基因重組機制提供的極其多樣的基因組合方式,從而幫助學生理解基因重組是生物多樣性形成的主要原因。正文中則簡要闡述了基因重組的概念、類型和意義。本節(jié)內容引導學生從分子水平上理解遺傳物質如何引起生物變異的。

在同一個直角坐標,做出兩個不同彈簧的F—X圖象,然后進行比較。圖象法處理數據更為直觀,更容易得出物理變化規(guī)律,且該種方法處理數據能更好地減小實驗的偶然誤差。最后老師歸納總結:得出胡克定律:F=KX(K為彈簧的頸度系數)[設計意圖:在探究彈力的大小與形變的定量關系時,由學生進行猜想、實驗和得出規(guī)律,并利用信息技術計算機繪制F—X圖象,充分利用信息技術資源和物理學科的整合。能較好地體現以學生為主的新的教學理念。對探究實驗過程教師加以指導,使學生學會團結合作、學會探究物理規(guī)律;再加上熟練信息技術,更有效地提高學習效率。](五)彈力的應用(圖片,視頻播放:射箭)[設計意圖:讓學生知道產品設計離不開物理理論,做到從實踐到理論,再從理論到實踐的學習過程。](六)開放式問題(視頻播放:撐桿跳高、跳水);提出問題:通過本節(jié)內容的學習,請同學們開放式地討論①從形變與彈力知識去思考,撐桿跳高運動員跳得這么高的主要原因是什么?②跳水運動員在空中滯空時間主要由哪方面決定?

本來比較速度變化的快慢也有兩種方法:一種是比較相同時間內速度變化量的大?。涣硪环N是比較發(fā)生相同的速度變化所需要的時間長短。但教材是將比較質點位置移動快慢的思想直接遷移過來,通過實例分析,使學生明白不同運動物體的速度變化快慢不同,表現在速度的變化與發(fā)生這個變化所用時間的比值不同,從而引入加速度的定義方法a=△v/△t。加速度表示速度的變化快慢,包括速度增加的快慢和減小的快慢,不能誤認為只要有加速度的運動速度就一定是增加的。廣義地講,加速度不僅可以描述速度大小的變化快慢,而且也可以描述速度方向變化的快慢,本節(jié)教材只限定在直線運動的情景中討論。加速度的矢量性是一個難點,教材是以與速度方向相同或是相反來表述加速度的矢量性的。如果以初速度方向為正方向,那么加速度就有正負之分,加速度的正負表示加速度的方向,不表示加速度的大小。

(三)合作交流能力提升教師:剛才我們通過實驗了解了小車的速度是怎樣隨時間變化的,但實驗中有一定的誤差,請同學們討論并說出可能存在哪些誤差,造成誤差的原因是什么?(每個實驗小組的同學之間進行熱烈的討論)學生:測量出現誤差。因為點間距離太小,測量長度時容易產生誤差。教師:如何減小這個誤差呢?學生:如果測量較長的距離,誤差應該小一些。教師:應該采取什么辦法?學生:應該取幾個點之間的距離作為一個測量長度。教師:好,這就是常用的取“計數點”的方法。我們應該在紙帶上每隔幾個計時點取作一個計數點,進行編號。分別標為:0、1、2、3……,測各計數點到“0”的距離。以減小測量誤差。教師:還有補充嗎?學生1:我在坐標系中描點畫的圖象只集中在坐標原定附近,兩條圖象沒有明顯的分開。學生2:描出的幾個點不嚴格的分布在一條直線上,還能畫直線嗎?

通過列表對比法、歸納法、、多媒體輔助法等教學方法,突破理論性強、不宜理解的“3S”原理與區(qū)別的知識難點。學生更是學會運用圖表方法、高效記憶法、合作學習法等方法學習地理知識,增加學習能力。[幻燈片] “3S技術”的應用:地理信息技術的應用十分廣泛,從實際身旁的社會生產生活,到地理學的區(qū)域地理環(huán)境研究。學生的年齡和認知范圍決定,此部分的案例教學的運用,前者容易接觸到、簡單直觀、易區(qū)分掌握“3S”技術特點和具體應用。而后者涉及地理學科的綜合性和區(qū)域性的特點,難度較大。針對學情特點,我多以前者案例入手學習,以后者案例加以補充。案例:遙感:(1)視頻 專家解說衛(wèi)星遙感受災影象(2)教材 圖1.6 1998年8月28日洞庭湖及荊江地區(qū)衛(wèi)星遙感圖像(3)視頻 2008年5月13日“北京一號”衛(wèi)星提供汶川的災區(qū)遙感圖像(4)教材 閱讀 遙感在農業(yè)方面的應用

1、《戰(zhàn)后資本主義世界經濟體系的形成》是人教版高中歷史必修Ⅱ第八單元第22課,學時為1課時?!稓v史必修Ⅱ》一書用古今貫通、中外關聯(lián)的八個專題來著重反映人類社會經濟和社會生活領域發(fā)展進程中的重要史實。從第一單元勾勒“古代中國經濟的基本結構與特點”再到第八單元“世界經濟的全球化趨勢”,以歷史唯物主義觀點清晰闡明經濟全球化是世界生產力發(fā)展的要求和結果,是不以人的意志為轉移的歷史必然趨勢。第八單元的標題是《世界經濟的全球化趨勢》,作為最后一單元,從內容上講,有強烈的時代感和現實意義,是全書內容的總結與升華展望。提起“全球化”這個十年前才首次出現在美國《商業(yè)周刊》的新名詞,如今卻是地球人都知道了。然而究竟什么是全球化?作為一歷史現象,全球化有其自身內部嚴密完整的體系,其中核心之一便是制度、規(guī)則的全球化,而這正是本課內容的著力點。

【這部分的設計目的,要學生明白熱帶雨林只是一個案例,我們的目的是要合理開發(fā)和保護全世界的森林。由森林的開發(fā)與保護來明確區(qū)域發(fā)展過程中產生的環(huán)境問題,危害及治理保護措施?!咳缓笾R遷移——東北林區(qū)的開發(fā)與保護介紹東北地區(qū)的森林材料:東北林區(qū)是我國最大的天然林區(qū),主要分布于大、小興安嶺及長白山地,在平衡大氣成分、凈化空氣、補給土壤有機質、涵養(yǎng)水源、保持水土、改善地方氣候有重要的作用。它還是我國最大的采伐基地,宜林地區(qū)廣,森林樹種豐富。 東北林區(qū)開發(fā)中的問題及影響點撥:由于人類的嚴重超采,采育脫節(jié),亂砍濫伐,毀林開荒,再加上森林火災,東北林區(qū)的面積在銳減,帶來了嚴重的生態(tài)惡化。我們該如何開發(fā)和保護東北地區(qū)的森林呢?

《奇偶性》內容選自人教版A版第一冊第三章第三節(jié)第二課時;函數奇偶性是研究函數的一個重要策略,因此奇偶性成為函數的重要性質之一,它的研究也為今后指對函數、冪函數、三角函數的性質等后續(xù)內容的深入起著鋪墊的作用.課程目標1、理解函數的奇偶性及其幾何意義;2、學會運用函數圖象理解和研究函數的性質;3、學會判斷函數的奇偶性.數學學科素養(yǎng)1.數學抽象:用數學語言表示函數奇偶性;2.邏輯推理:證明函數奇偶性;3.數學運算:運用函數奇偶性求參數;4.數據分析:利用圖像求奇偶函數;5.數學建模:在具體問題情境中,運用數形結合思想,利用奇偶性解決實際問題。重點:函數奇偶性概念的形成和函數奇偶性的判斷;難點:函數奇偶性概念的探究與理解.教學方法:以學生為主體,采用誘思探究式教學,精講多練。

《基本不等式》在人教A版高中數學第一冊第二章第2節(jié),本節(jié)課的內容是基本不等式的形式以及推導和證明過程。本章一直在研究不等式的相關問題,對于本節(jié)課的知識點有了很好的鋪墊作用。同時本節(jié)課的內容也是之后基本不等式應用的必要基礎。課程目標1.掌握基本不等式的形式以及推導過程,會用基本不等式解決簡單問題。2.經歷基本不等式的推導與證明過程,提升邏輯推理能力。3.在猜想論證的過程中,體會數學的嚴謹性。數學學科素養(yǎng)1.數學抽象:基本不等式的形式以及推導過程;2.邏輯推理:基本不等式的證明;3.數學運算:利用基本不等式求最值;4.數據分析:利用基本不等式解決實際問題;5.數學建模:利用函數的思想和基本不等式解決實際問題,提升學生的邏輯推理能力。重點:基本不等式的形成以及推導過程和利用基本不等式求最值;難點:基本不等式的推導以及證明過程.

本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人 教A版)第五章《三角函數》,本節(jié)課是第1課時,本節(jié)主要介紹推廣角的概念,引入正角、負角、零角的定義,象限角的概念以及終邊相同的角的表示法。樹立運動變化的觀點,并由此進一步理解推廣后的角的概念。教學方法可以選用討論法,通過實際問題,如時針與分針、體操等等都能形成角的流念,給學生以直觀的印象,形成正角、負角、零角的概念,明確規(guī)定角的概念,通過具體問題讓學生從不同角度理解終邊相同的角,從特殊到一般歸納出終邊相同的角的表示方法。A.了解任意角的概念;B.掌握正角、負角、零角及象限角的定義,理解任意角的概念;C.掌握終邊相同的角的表示方法;D.會判斷角所在的象限。 1.數學抽象:角的概念;2.邏輯推理:象限角的表示;3.數學運算:判斷角所在象限;4.直觀想象:從特殊到一般的數學思想方法;

本節(jié)主要內容是三角函數的誘導公式中的公式二至公式六,其推導過程中涉及到對稱變換,充分體現對稱變換思想在數學中的應用,在練習中加以應用,讓學生進一步體會 的任意性;綜合六組誘導公式總結出記憶誘導公式的口訣:“奇變偶不變,符號看象限”,了解從特殊到一般的數學思想的探究過程,培養(yǎng)學生用聯(lián)系、變化的辯證唯物主義觀點去分析問題的能力。誘導公式在三角函數化簡、求值中具有非常重要的工具作用,要求學生能熟練的掌握和應用。課程目標1.借助單位圓,推導出正弦、余弦第二、三、四、五、六組的誘導公式,能正確運用誘導公式將任意角的三角函數化為銳角的三角函數,并解決有關三角函數求值、化簡和恒等式證明問題2.通過公式的應用,了解未知到已知、復雜到簡單的轉化過程,培養(yǎng)學生的化歸思想,以及信息加工能力、運算推理能力、分析問題和解決問題的能力。

一、復習回顧,溫故知新1. 任意角三角函數的定義【答案】設角 它的終邊與單位圓交于點 。那么(1) (2) 2.誘導公式一 ,其中, 。終邊相同的角的同一三角函數值相等二、探索新知思考1:(1).終邊相同的角的同一三角函數值有什么關系?【答案】相等(2).角 -α與α的終邊 有何位置關系?【答案】終邊關于x軸對稱(3).角 與α的終邊 有何位置關系?【答案】終邊關于y軸對稱(4).角 與α的終邊 有何位置關系?【答案】終邊關于原點對稱思考2: 已知任意角α的終邊與單位圓相交于點P(x, y),請同學們思考回答點P關于原點、x軸、y軸對稱的三個點的坐標是什么?【答案】點P(x, y)關于原點對稱點P1(-x, -y)點P(x, y)關于x軸對稱點P2(x, -y) 點P(x, y)關于y軸對稱點P3(-x, y)

學生在初中學習了 ~ ,但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.因此為了準確描述這些現象,本節(jié)課主要就旋轉度數和旋轉方向對角的概念進行推廣.課程目標1.了解任意角的概念.2.理解象限角的概念及終邊相同的角的含義.3.掌握判斷象限角及表示終邊相同的角的方法.數學學科素養(yǎng)1.數學抽象:理解任意角的概念,能區(qū)分各類角;2.邏輯推理:求區(qū)域角;3.數學運算:會判斷象限角及終邊相同的角.重點:理解象限角的概念及終邊相同的角的含義;難點:掌握判斷象限角及表示終邊相同的角的方法.教學方法:以學生為主體,采用誘思探究式教學,精講多練。教學工具:多媒體。一、 情景導入初中對角的定義是:射線OA繞端點O按逆時針方向旋轉一周回到起始位置,在這個過程中可以得到 ~ 范圍內的角.但是現實生活中隨處可見超出 ~ 范圍的角.例如體操中有“前空翻轉體 ”,且主動輪和被動輪的旋轉方向不一致.

知識探究(一):普查與抽查像人口普查這樣,對每一個調查調查對象都進行調查的方法,稱為全面調查(又稱普查)。 在一個調查中,我們把調查對象的全體稱為總體,組成總體的每一個調查對象稱為個體。為了強調調查目的,也可以把調查對象的某些指標的全體作為總體,每一個調查對象的相應指標作為個體。問題二:除了普查,還有其他的調查方法嗎?由于人口普查需要花費巨大的財力、物力,因而不宜經常進行。為了及時掌握全國人口變動狀況,我國每年還會進行一次人口變動情況的調查,根據抽取的居民情況來推斷總體的人口變動情況。像這樣,根據一定目的,從總體中抽取一部分個體進行調查,并以此為依據對總體的情況作出估計和判斷的方法,稱為抽樣調查(或稱抽查)。我們把從總體中抽取的那部分個體稱為樣本,樣本中包含的個體數稱為樣本量。

本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。