
方法總結(jié):由絕對值的定義可知,一個數(shù)的絕對值越小,離原點越近.將實際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標準質(zhì)量的差的絕對值越小,越接近標準質(zhì)量.【類型四】 絕對值的非負性已知|x-3|+|y-2|=0,求x+y的值.解析:一個數(shù)的絕對值總是大于或等于0,即為非負數(shù),若兩個非負數(shù)的和為0,則這兩個數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個非負數(shù)的和為0,則這幾個數(shù)都為0.三、板書設(shè)計絕對值相反數(shù)絕對值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個數(shù)的絕對值相等兩個負數(shù)比較大?。航^對值大的反而小絕對值這個名詞既陌生,又是一個不易理解的數(shù)學(xué)術(shù)語,是本章的重點內(nèi)容,同時也是一個難點內(nèi)容.教材從幾何的角度給出絕對值的概念,也就是從數(shù)軸上表示數(shù)的點的位置出發(fā),得出定義的.

方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內(nèi)的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調(diào)整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號法則和熟練運用合并同類項的法則.

根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結(jié):從扇形統(tǒng)計圖中獲取正確的信息是解題的關(guān)鍵.語文老師對班上學(xué)生的課外閱讀情況做了調(diào)查,并請數(shù)學(xué)老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總?cè)藬?shù)即可得各個百分比,所有的百分比之和為1.方法總結(jié):由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.

第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個方程中的某個未知數(shù)用含有另一個未知數(shù)的代數(shù)式表示出來,并代入另一個方程中,從而消去一個未知數(shù),化二元一次方程組為一元一次方程.解這個一元一次方程,便可得到一個未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對未知數(shù)的值.即求得了方程組的解.目的:鼓勵學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對 “溫故而知新” 的體會,知道“學(xué)而時習(xí)之”.設(shè)計效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進一步鞏固了所學(xué)知識.第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.

第一環(huán)節(jié):回顧引入活動內(nèi)容:①什么叫做定義?舉例說明.②什么叫命題?舉例說明. 活動目的:回顧上節(jié)知識,為本節(jié)課的展開打好基礎(chǔ).教學(xué)效果:學(xué)生舉手發(fā)言,提問個別學(xué)生.第二環(huán)節(jié):探索命題的結(jié)構(gòu)活動內(nèi)容:① 探討命題的結(jié)構(gòu)特征觀察下列命題,發(fā)現(xiàn)它們的結(jié)構(gòu)有什么共同特征?(1)如果兩個三角形的三條邊對應(yīng)相等,那么這兩個三角形全等.(2)如果一個三角形是等腰三角形,那么這個三角形的兩個底角相等.(3)如果一個四邊形的一組對邊平行且相等,那么這個四邊形是平行四邊形.(4)如果一個四邊的對角線相等,那么這個四邊形是矩形.(5)如果一個四邊形的兩條對角線互相垂直,那么這個四邊形是菱形.② 總結(jié)命題的結(jié)構(gòu)特征(1)上述命題都是“如果……,那么……”的形式.(2)“如果……”是已知的事項,“那么……”是由已知事項推斷出的結(jié)論.

【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗轉(zhuǎn)化與化歸思想,增強學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.

一、情境導(dǎo)入神舟十號是中國神舟號系列飛船之一,主要由推進艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時38分02.666秒發(fā)射,由長征二號F改進型運載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號進行對接.6月26日回歸地球.要讀懂這段報導(dǎo),你認為要知道哪些名稱和術(shù)語的含義?二、合作探究探究點一:定義 下列語句屬于定義的是()A.明天是晴天B.長方形的四個角都是直角C.等角的補角相等D.平行四邊形是兩組對邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對天氣的預(yù)測,B是描述長方形的性質(zhì),C是描述補角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對術(shù)語和名稱的含義的描述,是對一個事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對其性質(zhì)的判斷.

求證:直角三角形的兩個銳角互余.解析:分析這個命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計命題分類公理:公認的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實際情境,初步體會公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對真假命題有一個清楚的認識,從而進一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達能力.

已知xm-n+1y與-2xn-1y3m-2n-5是同類項,求m和n的值.解析:根據(jù)同類項的概念,可列出含字母m和n的方程組,從而求出m和n.解:因為xm-n+1y與-2xn-1y3m-2n-5是同類項,所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時,xm-n+1y與-2xn-1y3m-2n-5是同類項.方法總結(jié):解這類題,就是根據(jù)同類項的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計用加減法解二元一次方程組的步驟:①變形,使某個未知數(shù)的系數(shù)絕對值相等;②加減消元;③解一元一次方程;④求另一個未知數(shù)的值,得方程組的解.進一步理解二元一次方程組的“消元”思想,初步體會數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.

解析:要在地球儀上確定南昌市的位置,需要知道它的經(jīng)緯度,故選D.方法總結(jié):本題考查了坐標確定位置,熟記位置的確定需要橫向與縱向的兩個數(shù)據(jù)是解題的關(guān)鍵.【類型二】 用“區(qū)域定位法”確定位置如圖所示是某市區(qū)的部分簡圖,文化宮在D2區(qū),體育場在C4區(qū),據(jù)此說明醫(yī)院在________區(qū),陽光中學(xué)在________區(qū).解析:本題首先給出的是表示文化宮和體育場的位置,即D2區(qū)和C4區(qū),這就確定了本題中表示建筑物位置的方法,即字母表示列數(shù),數(shù)字表示行數(shù).故填A(yù)3,D5.方法總結(jié):解此類題先要弄清區(qū)域定位法中字母及數(shù)字各自表示的含義,再用已知的表示方法來確定相關(guān)位置.三、板書設(shè)計確定位置有序?qū)崝?shù)對方位法經(jīng)緯度區(qū)域定位法將現(xiàn)實生活中常用的定位方法呈現(xiàn)給學(xué)生,進一步豐富學(xué)生的數(shù)學(xué)活動經(jīng)驗,培養(yǎng)學(xué)生觀察、分析、歸納、概括的能力.教學(xué)過程中創(chuàng)設(shè)生動活潑、直觀形象、且貼近他們生活的問題情境;另一方面,為學(xué)生創(chuàng)造自主學(xué)習(xí)、合作交流的機會,促使他們主動參與、積極探究.

第一環(huán)節(jié)感受生活中的情境,導(dǎo)入新課通過若干圖片,引導(dǎo)學(xué)生感受生活中常常需要確定位置.導(dǎo)入新課:怎樣確定位置呢?——§3.1確定位置。第二環(huán)節(jié)分類討論,探索新知1.溫故啟新(1)溫故:在數(shù)軸上,確定一個點的位置需要幾個數(shù)據(jù)呢? 答:一個,例如,若A點表示-2,B點表示3,則由-2和3就可以在數(shù)軸上找到A點和B點的位置??偨Y(jié)得出結(jié)論:在直線上, 確定一個點的位置一般需要一個數(shù)據(jù).(2)啟新:在平面內(nèi),又如何確定一個點的位置呢?請同學(xué)們根據(jù)生活中確定位置的實例,請談?wù)勛约旱目捶?2.舉例探究Ⅰ. 探究1(1)在電影院內(nèi)如何找到電影票上指定的位置?(2)在電影票上“6排3號”與“3排6號”中的“6”的含義有什么不同?(3)如果將“6排3號”簡記作(6,3),那么“3排6號”如何表示?(5,6)表示什么含義? (4) 在只有一層的電影院內(nèi),確定一個座位一般需要幾個數(shù)據(jù)?結(jié)論:生活中常常用“排數(shù)”和“號數(shù)”來確定位置. Ⅱ. 學(xué)有所用(1) 你能用兩個數(shù)據(jù)表示你現(xiàn)在所坐的位置嗎?

2.如何找一條線段的黃金分割點,以及會畫黃金矩形.3.能根據(jù)定義判斷某一點是否為一條線段的黃金分割點.Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個端點,選擇AB的黃金分割點C作為第一個試驗點,C點的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進行第二次試 驗.這次的試驗點應(yīng)該選AC的黃金分割點D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點還不理想,可以按黃金分割的方法繼續(xù)試驗下去.如果太濃,可以選DC之間的黃金分割 點 ;如果太稀,可以選AD之間的黃金分割點,用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進行科學(xué)試驗,可以用最少的試驗次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時間,也節(jié)約了原材料.●板書設(shè)計

一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學(xué)的有關(guān)數(shù)學(xué)知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識.教學(xué)中應(yīng)激發(fā)學(xué)生主動參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.

2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會其本質(zhì)思想——消元,體會“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對問題的創(chuàng)設(shè),鼓勵學(xué)生去觀察方程的特點,在過手訓(xùn)練中提高學(xué)生的解答正確率和表達規(guī)范性,提升學(xué)生學(xué)會數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計的問題,引導(dǎo)學(xué)生在已有知識的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動中,加深學(xué)生對“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識、技能和方法,提高學(xué)習(xí)效率,而且還加深了對數(shù)學(xué)中通性和通法的認識,體會學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.

1.細講概念、強化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強概念形成過程的教學(xué),對提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強訓(xùn)練,逐步深化.“講清概念”就是通過具體實例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個正數(shù) 的平方等于 ,即 ,那么這個正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.

解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會更美.易錯提醒:要準確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計黃金分割定義:一般地,點C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點 C黃金分割黃金分割點:一條線段有兩個黃金分割點黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會黃金分割的文化價值,在應(yīng)用中進一步理解相關(guān)內(nèi)容,在實際操作、思考、交流等過程中增強學(xué)生的實踐意識和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會數(shù)學(xué)的思維方式,增進數(shù)學(xué)學(xué)習(xí)的興趣.

[設(shè)計意圖:鞏固減法的意義,培養(yǎng)學(xué)生初步的思維能力。](2)組織學(xué)生自己先算一算,教師巡視,捕捉學(xué)生學(xué)習(xí)信息,糾正不良學(xué)習(xí)習(xí)慣。[設(shè)計意圖:通過巡視,及時捕捉學(xué)生的學(xué)習(xí)信息,發(fā)現(xiàn)問題及時解決;把培養(yǎng)學(xué)生良好的計算習(xí)慣、審題習(xí)慣及檢查習(xí)慣落到實處。](3)組織學(xué)生全班交流計算方法。組織學(xué)生在全班交流解決計算“32-2=”的方法,引導(dǎo)學(xué)生理解“32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”。如果學(xué)生用其他的方法來計算,只要正確,也要肯定。[設(shè)計意圖:同前面一樣,鞏固數(shù)的組成,訓(xùn)練每一個學(xué)生“述說整十?dāng)?shù)加一位數(shù)相應(yīng)減法的計算過程”,突破難點。]3.加減法對比組織學(xué)生比較“30+2=32”和“32-2=30”,并說一說有什么發(fā)現(xiàn),使學(xué)生認識到“3個十和2個一組成32,所以30加2等于32;反過來,32是由3個十和2個一組成,從32里去掉2,就剩3個十,所以32減2等于30”[設(shè)計意圖:強化加減法意義的聯(lián)系,培養(yǎng)學(xué)生初步的思維能力。]

解析:正多邊形的邊心距、半徑、邊長的一半正好構(gòu)成直角三角形,根據(jù)勾股定理就可以求解.解:(1)設(shè)正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結(jié)果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結(jié):正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內(nèi)切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉(zhuǎn)化為解直角三角形.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第4題【類型四】 圓內(nèi)接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結(jié)果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現(xiàn)要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

解:(1)設(shè)x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設(shè)x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關(guān)系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設(shè)計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學(xué)過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學(xué)的應(yīng)用與價值,感受數(shù)學(xué)與人類生活的密切聯(lián)系,激發(fā)學(xué)生學(xué)習(xí)數(shù)學(xué)的興趣,培養(yǎng)學(xué)生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

由于題目較簡單,所以學(xué)生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結(jié):活動內(nèi)容:學(xué)生歸納總結(jié)本節(jié)課所學(xué)知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關(guān)系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調(diào)本課的重點內(nèi)容是要學(xué)會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關(guān)系.引導(dǎo)學(xué)生自己對所學(xué)知識和思想方法進行歸納和總結(jié),從而形成自己對數(shù)學(xué)知識的理解和解決問題的方法策略.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。