
解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

由于題目較簡單,所以學生分析解答時很有信心,且正確率也比較高,同時也進一步體會到了借助“線段圖”分析行程問題的優(yōu)越性.六、歸納總結:活動內容:學生歸納總結本節(jié)課所學知識:1.會借線段圖分析行程問題.2.各種行程問題中的規(guī)律及等量關系.同向追及問題:①同時不同地——甲路程+路程差=乙路程; 甲時間=乙時間.②同地不同時——甲時間+時間差=乙時間; 甲路程=乙路程.相向的相遇問題:甲路程+乙路程=總路程; 甲時間=乙時間.目的:強調本課的重點內容是要學會借線段圖來分析行程問題,并能掌握各種行程問題中的規(guī)律及等量關系.引導學生自己對所學知識和思想方法進行歸納和總結,從而形成自己對數學知識的理解和解決問題的方法策略.

解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結:環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數學的應用與價值,感受數學與人類生活的密切聯系,激發(fā)學生學習數學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

練習:現在你能解答課本85頁的習題3.1第6題嗎?有一個班的同學去劃船,他們算了一下,如果增加一條船,正好每條船坐6人,如果送還了一條船 ,正好每條船坐9人,問這個班共多少同學?小結提問:1、今天你又學會了解方程的哪些方法?有哪些步聚?每一步的依據是什么?2、現在你能回答前面提到的古老的代數書中的“對消”與“還原”是什么意思嗎?3、今天討論的問題中的相等關系又有何共同特點?學生思考后回答、整理:① 解方程的步驟及依據分別是:移項(等式的性質1)合并(分配律)系數化為1(等式的性質2)表示同一量的兩個不同式子相等作業(yè):1、 必做題:課本習題2、 選做題:將一塊長、寬、高分別為4厘米、2厘米、3厘米的長方體橡皮泥捏成一個底面半徑為2厘米的圓柱,它的高是多少?(精確到0.1厘米)

(3)移項得-4x=4+8,合并同類項得-4x=12,系數化成1得x=-3;(4)移項得1.3x+0.5x=0.7+6.5,合并同類項得1.8x=7.2,系數化成1得x=4.方法總結:將所有含未知數的項移到方程的左邊,常數項移到方程的右邊,然后合并同類項,最后將未知數的系數化為1.特別注意移項要變號.探究點三:列一元一次方程解應用題把一批圖書分給七年級某班的同學閱讀,若每人分3本,則剩余20本,若每人分4本,則缺25本,這個班有多少學生?解析:根據實際書的數量可得相應的等量關系:3×學生數量+20=4×學生數量-25,把相關數值代入即可求解.解:設這個班有x個學生,根據題意得3x+20=4x-25,移項得3x-4x=-25-20,合并同類項得-x=-45,系數化成1得x=45.答:這個班有45人.方法總結:列方程解應用題時,應抓住題目中的“相等”、“誰比誰多多少”等表示數量關系的詞語,以便從中找出合適的等量關系列方程.

將一個圓分成三個大小相同的扇形,你能計算出它們的圓心角的度數嗎?你知道每個扇形的面積和整個圓的面積的關系嗎?與同伴交流設計意圖:通過引導學生根據圓心角與圓心角的比例確定扇形面積與整圓的面積關系為后面學習扇形面積公式做鋪墊,體現知識的延續(xù)性。(六)、鞏固練習.如圖,把一圓分成三個扇形,你能求出這三個扇形的圓心角嗎?若圓的半徑為2,你能求出各部分的面積嗎?(七)、課堂小結學完這節(jié)課你有哪些收獲?設計意圖:通過小節(jié)讓學生對所學知識進行梳理,使所學知識能合理地納入自身的知識結構。(八) 布置作業(yè):中等學生:P125. 1優(yōu)等生: P125. 2,3我針對學生素質的差異設計了有層次的訓練題,留給學生課后自主探究,這樣即使學生掌握基礎知識,又使學有余力的學生有所提高,從而達到拔尖和“減負”的目的。

一、教材分析(一)教材的地位和作用:本節(jié)課是北師大七年級(上)義務教育課程標準實驗教材第2章第6節(jié)第一課時的內容。它是學生在已經掌握有理數加法、減法、乘法、除法、乘方以后進行學習的。它是建立在有理數的有關概念和各種運算的意義及法則的基礎上進行的綜合性運算。它是本章的重點之一,是以上各種運算的繼續(xù)和發(fā)展,對學生運算能力和數學學習能力的培養(yǎng),有著十分重要的意義,同時也是初中數學運算的重要內容之一,是后續(xù)學習的基礎。(二)教學目標的確立:參照義務教育階段《數學課程標準》的要求,確定本節(jié)課的教學目標如下:1、知識技能目標:(1)掌握有理數的混合運算法則及運算順序。(2)熟練的進行有理數的混合運算。2、能力目標:培養(yǎng)學生的觀察能力和運算能力。3、情感與態(tài)度目標:(1)培養(yǎng)學生在計算前認真審題,確定運算順序,計算中按步驟審慎進行,并養(yǎng)成驗算的良好的學習習慣。

5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現的一些小問題處理還沒有能夠處理得很好,我應該吸取經驗教訓,再以后的教學中加以改進。 另外對于多個有理數相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!

五、兩點說明。(一)、板書設計這節(jié)課的板書我是這樣設計的,在黑板的正上方中間處寫明課題,然后把板書分為左右兩部分,左邊是有理數除法的法則,為了培養(yǎng)學生把文字語言轉化成符號語言的能力,板書中只出現兩種法則的符號表示,從而加深他們對法則的理解,板書右邊是學生的板演,以便于比較他們做題中出現的問題。板書下方是課堂小結,重點寫出:有理數的除法可以轉化成有理數的乘法,以體現本節(jié)課中的重要的數學思想方法。有理數的除法板演練習:有理數除法的法則:a÷b=a×1/b(b≠0) 1a>0,b>0,a/b>0;a0; 2a>0,b0,a/b<0. 3課堂小結:有理數的除法 有理數的乘法轉化(二)、時間分配:教學過程中的八個環(huán)節(jié)所需的時間分別為:1分鐘、2分鐘、5分鐘、8分鐘、8分鐘、16分鐘、2分鐘、1分鐘。

說明:此處進行的是一次嘗試應用乘方運算來解決開頭的問題,互相呼應,以體現整節(jié)課的完整性,把學生開始的興趣再次引向高潮。趣味探索:一張薄薄的紙對折56次后有多厚?試驗一下你能折這么厚嗎?說明:這個探索實際上仍是對學生應用能力的一個檢查,紙對折56次,用什么運算來計算比較方便,另外計算過程中可使用計算器,進一步加深對乘方意義的理解(五)作業(yè)P56頁1、2說明:這兩個習題是對課本上例題的簡單重復和模仿,通過本節(jié)課的學習,多數學生應該可以較輕松地完成??傊?,在整個教學設計中,我始終以學生為課堂主體,讓他們積極參與到教學中來,不斷從舊知識中獲得新的認識,通過不斷進行聯系比較,讓學生主動自覺地去思考、探索、總結直至發(fā)現結果、發(fā)現"方法",進而優(yōu)化了整個教學。

四、教學過程分析為有序、有效地進行教學,本節(jié)課我主要安排了以下教學環(huán)節(jié):(一)復習導入主要復習一下三種統(tǒng)計圖,為接下來介紹三種統(tǒng)計圖的特點及根據實際問題選取適當的統(tǒng)計圖做好知識準備。(二)問題探究選取課本上“小華對1992~2002年同學家中有無電視機及近一年來同學在家看電視的情況”的3個調查項目,進而設計3個探究問題從而加深學生對每一種統(tǒng)計圖的進一步認識,至此用自己的語言總結出每一種統(tǒng)計圖的特點。(三)實踐練兵這一環(huán)節(jié)通過2個實際問題的設計,通過學生對問題的分析、討論,使學生認識到適當選取統(tǒng)計圖有助于幫助人們去更快速、更準確地獲取信息。(四)課堂小結總結這一節(jié)課所學的重點知識,這部分主要是讓學生自己去總結,看看這節(jié)課自己有哪些收獲。(五)作業(yè)布置進一步鞏固本節(jié)課所學的知識,達到教學效果。以上就是我對這節(jié)課的見解,不足之處還望批評和指正。

(一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大小;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數.解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當地設出未知數,準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數,a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為?! ?數,a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數項,a,b分別稱為二次 項系數和一次項系數本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現實世界的一個有效數學模型,初步培養(yǎng)學生的數學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數學的興趣.

(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調換,至少應該進多少件西裝?六、課堂小結:盡管隨機事件在每次實驗中發(fā)生與否具有不確定性,但只要保持實驗條件不變,那么這一事件出現的頻率就會隨著實驗次數的增大而趨于穩(wěn)定,這個穩(wěn)定值就可以作為該事件發(fā)生概率的估計值。七、作業(yè):課后練習補充:一個口袋中有12個白球和若干個黑球,在不允許將球倒出來數的前提下,小亮為估計口袋中黑球的個數,采用了如下的方法:每次先從口袋中摸出10個球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復上述過程5次,得到的白求數與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據上述數據,小亮可估計口袋中大約有 48 個黑球。

由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.

四、范例學習、理解領會例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時刻甲木桿在陽光下的影子如圖5-6所示,你能畫出此時乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當乙木桿移動到什么位置時,其影子剛好不落在墻上?(3)在(2)的情況下,如果測得甲、乙木桿的影子長分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學生畫圖、 實驗、觀察、探索。五、隨堂練習課本隨堂練習 學生觀察、畫圖、合作交流。六、課堂總結本節(jié)課通過各種實踐活動,促進大家對內容的理解,本課內容,要體會物體在太陽光下形成的不同影子,在操作中觀察不 同時刻影子的方向和大小變化特征。在同一時刻,物體的影子與它們的高度成比 例.

三、課堂檢測:(一)、判斷題(是一無二次方程的在括號內劃“√”,不是一元二次方程的,在括號內劃“×”)1. 5x2+1=0 ( ) 2. 3x2+ +1=0 ( )3. 4x2=ax(其中a為常數) ( ) 4.2x2+3x=0 ( )5. =2x ( ) 6. =2x ( ) (二)、填空題.1.方程5(x2- x+1)=-3 x+2的一般形式是__________,其二次項是__________,一次項是__________,常數項是__________.2.如果方程ax2+5=(x+2)(x-1)是關于x的一元二次方程,則a__________.3.關于x的方程(m-4)x2+(m+4)x+2m+3=0,當m__________時,是一元二次方程,當m__________時,是一元一次方程。四、學習體會:五、課后作業(yè)

(4)議一議:頻率與概率有什么區(qū)別和聯系?隨著重復實驗次數的不斷增加,頻率的變化趨勢如何?結論:從上面的試驗可以看到:當重復實驗的次數大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農場里出生了1頭白色的小奶牛,據統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?

(1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結:本題主要考查用頻率估計概率的方法,當摸球次數增多時,摸到白球的頻率mn將會接近一個數值,則可把這個數值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數較大時實驗頻率穩(wěn)定于理論頻率,并據此估計某一事件發(fā)生的概率.經歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數據的技能,提高數學交流水平,發(fā)展探索、合作的精神.

由上表可知,共有6種結果,且每種結果是等可能的,其中兩次摸出白球的結果有2種,所以P(兩次摸出的球都是白球)=26=13;(2)列表如下:第一次第二次 白1 白2 紅白1 (白1,白1) (白2,白1) (紅,白1)白2 (白1,白2) (白2,白2) (紅,白2)紅 (白1,紅) (白2,紅) (紅,紅)由上表可知,共有9種結果,且每種結果是等可能的,其中兩次摸出白球的結果有4種,所以P(兩次摸出的球都是白球)=49.方法總結:在試驗中,常出現“放回”和“不放回”兩種情況,即是否重復進行的事件,在求概率時要正確區(qū)分,如利用列表法求概率時,不重復在列表中有空格,重復在列表中則不會出現空格.三、板書設計用樹狀圖或表格求概率畫樹狀圖法列表法通過與學生現實生活相聯系的游戲為載體,培養(yǎng)學生建立概率模型的思想意識.在活動中進一步發(fā)展學生的合作交流意識,提高學生對所研究問題的反思和拓展的能力,逐步形成良好的反思意識.鼓勵學生思維的多樣性,發(fā)展學生的創(chuàng)新意識.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。