
[想一想]同學(xué)們經(jīng)歷了上述三種方法,你還能想出哪些測量旗桿高度的方法?你認(rèn)為最優(yōu)化的方法是哪種?思路點(diǎn)拔:1、如果旗桿周圍有足夠地空地使旗桿在太陽光照射下影子都在平地上,并能測出影子的長度,那么,可以在平地垂直樹一根小棒,等到小棒的影子恰好等于棒高時(shí),再量旗桿的影子,此時(shí)旗桿的影子長度就是這個(gè)旗桿的高度.2、可以采用立一個(gè)已知長度的參照物在旗桿旁照相后量出照片中旗桿與參照物的長度根據(jù)線段成比例來進(jìn)行計(jì)算.3、拿一根知道長度的直棒,手臂伸直,不斷調(diào)整自己的位置,使直棒剛好完全擋住旗桿,量出此時(shí)人到旗桿的距離、人手臂的長度和棒長,就可以利用三角形相似來進(jìn)行計(jì)算.等等.第四環(huán)節(jié) 課堂小結(jié)1、本節(jié)課你學(xué)到了哪些知識(shí)?2、在運(yùn)用科學(xué)知識(shí)進(jìn)行實(shí)踐過程中,你是否想到最優(yōu)的方法?3、在與同伴合作交流中,你對自己的表現(xiàn)滿意嗎?第五環(huán)節(jié) 布置作業(yè),反思提煉

五、回顧總結(jié):總結(jié):1、投影、中心投影 2、如何確定光源(小組交流總結(jié).)六、自我檢測:檢測:晚上,小華在馬路的一側(cè)散步,對面有一路燈,當(dāng)小華筆直地往前走時(shí),他在這盞路燈下的影子也隨之向前移動(dòng).小華頭頂?shù)挠白铀?jīng)過的路徑是怎樣的?它與小華所走的路線有何位置關(guān)系?七、課后延伸:延伸:課本128頁習(xí)題5.1八、板書設(shè)計(jì)投影 做一做:投影線投影面 議一議:中心投影九、課后反思本節(jié)課先由皮影戲引出燈光與影子這個(gè)話題,接著經(jīng)歷實(shí)踐、探索的過程,掌握了中心投影的含義,進(jìn)一步根據(jù)燈光光線的特點(diǎn),由實(shí)物與影子來確定路燈的位置,能畫出在同一時(shí)刻另一物體的影子,還要求大家不僅要自己動(dòng)手實(shí)踐,還要和同伴互相交流.同時(shí)要用自己的語言加以描述,做到手、嘴、腦互相配合,培養(yǎng)大家的實(shí)踐操作能力,合作交流能力,語言表達(dá)能力.

(1)填寫表格中次品的概率.(2)從這批西裝中任選一套是次品的概率是多少?(3)若要銷售這批西裝2000件,為了方便購買次品西裝的顧客前來調(diào)換,至少應(yīng)該進(jìn)多少件西裝?六、課堂小結(jié):盡管隨機(jī)事件在每次實(shí)驗(yàn)中發(fā)生與否具有不確定性,但只要保持實(shí)驗(yàn)條件不變,那么這一事件出現(xiàn)的頻率就會(huì)隨著實(shí)驗(yàn)次數(shù)的增大而趨于穩(wěn)定,這個(gè)穩(wěn)定值就可以作為該事件發(fā)生概率的估計(jì)值。七、作業(yè):課后練習(xí)補(bǔ)充:一個(gè)口袋中有12個(gè)白球和若干個(gè)黑球,在不允許將球倒出來數(shù)的前提下,小亮為估計(jì)口袋中黑球的個(gè)數(shù),采用了如下的方法:每次先從口袋中摸出10個(gè)球,求出其中白球與10的比值,再把球放回袋中搖勻。不斷重復(fù)上述過程5次,得到的白求數(shù)與10的比值分別為:0.4,0.1,0.2,0.1,0.2。根據(jù)上述數(shù)據(jù),小亮可估計(jì)口袋中大約有 48 個(gè)黑球。

三:鞏固新知1、判斷對錯(cuò):(1)如果一個(gè)菱形的兩條對角線相等,那么它一定是正方形. ( )(2)如果一個(gè)矩形的兩條對角線互相垂直,那么它一定是正方形.( )(3)兩條對角線互相垂直平分且相等的四邊形,一定是正方形. ( )(4)四條邊相等,且有一個(gè)角是直角的四邊形是正方形. ( )2、已知:點(diǎn)E、F、G、H分別是正方形ABCD四條邊上的中點(diǎn),并且E、F、G、H分別是AB、BC、CD、AD的中點(diǎn).求證:四邊形EFGH是正方形.3、自己完成課本P23的議一議四、小結(jié)1.正方形的判定方法.2.了解正方形、矩形、菱形之間的聯(lián)系與區(qū)別,體驗(yàn)事物之間是相互聯(lián)系但又有區(qū)別的辯證唯物主義觀點(diǎn).3.本節(jié)的收獲與疑惑.

一、 說教材《百分?jǐn)?shù)》是義務(wù)教育人教版小學(xué)數(shù)學(xué)第十二冊第二單元的內(nèi)容。它是在學(xué)生學(xué)習(xí)了運(yùn)用百分?jǐn)?shù)解決實(shí)際問題的基礎(chǔ)上來進(jìn)行教學(xué)的。多數(shù)同學(xué)在日常生活中通過新聞媒體、購物等對折扣多少有所接觸、了解。因此根據(jù)學(xué)生現(xiàn)狀,需要教師規(guī)范、指導(dǎo)形成系統(tǒng)的概念,聯(lián)系生活實(shí)踐來展開教學(xué)。使學(xué)生理解折扣意義,懂得打折時(shí)原價(jià)、現(xiàn)價(jià)和折扣三者之間的數(shù)量關(guān)系。因此結(jié)合本課知識(shí)特點(diǎn)及課程標(biāo)準(zhǔn)的要求,我確定了本課的教學(xué)目標(biāo)及教學(xué)重點(diǎn)、難點(diǎn)?!窘虒W(xué)目標(biāo)】⒈ 識(shí)與技能:通過豐富多彩的學(xué)習(xí)情境,使學(xué)生理解打“折”的意義和計(jì)算方法,并能合理、靈活地選擇方法,正確地列式計(jì)算。⒉ 過程與方法:通過各種學(xué)習(xí)活動(dòng),讓學(xué)生經(jīng)歷用“折扣”知識(shí)解決生活中的實(shí)際問題的過程,提高學(xué)生運(yùn)用數(shù)學(xué)知識(shí)解決實(shí)際問題的能力。同時(shí)培養(yǎng)學(xué)生善于觀察、樂于思考、敢于表達(dá)的良好學(xué)習(xí)習(xí)慣。⒊ 情感態(tài)度與價(jià)值觀:使學(xué)生體驗(yàn)到到生活中處處有數(shù)學(xué),激發(fā)學(xué)生學(xué)數(shù)學(xué)、用數(shù)學(xué)的興趣?!窘虒W(xué)重點(diǎn)】溝通“折扣”與百分?jǐn)?shù)之間的聯(lián)系,會(huì)合理、靈活地運(yùn)用 所學(xué)知識(shí)解決生活中的實(shí)際問題?!窘虒W(xué)難點(diǎn)】會(huì)合理、靈活地運(yùn)用所學(xué)知識(shí)解決生活中的實(shí)際問題。

解:設(shè)個(gè)位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個(gè)數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€(gè)位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時(shí),14-x=6.所以這個(gè)兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個(gè),且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書設(shè)計(jì)幾何問題及數(shù)字問題幾何問題面積問題動(dòng)點(diǎn)問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識(shí)方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識(shí).體會(huì)數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價(jià)值.

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時(shí),一般不用配方法.

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書設(shè)計(jì)用配方法解簡單的一元二次方程:1.直接開平方法:形如(x+m)2=n(n≥0)用直接開平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開平方法求出它的解.

∴此方程無解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會(huì)一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.

教學(xué)目標(biāo)1、通過教學(xué),學(xué)生懂得應(yīng)用加法運(yùn)算定律可以使一些分?jǐn)?shù)計(jì)算簡便,會(huì)進(jìn)行分?jǐn)?shù)加法的簡便計(jì)算.2、培養(yǎng)學(xué)生仔細(xì)、認(rèn)真的學(xué)習(xí)習(xí)慣.3、培養(yǎng)學(xué)生觀察、演繹推理的能力.教學(xué)重點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)難點(diǎn)整數(shù)加法運(yùn)算定律在分?jǐn)?shù)加法中的應(yīng)用,并使一些分?jǐn)?shù)加法計(jì)算簡便.教學(xué)過程設(shè)計(jì)一、復(fù)習(xí)準(zhǔn)備(演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.教師:整數(shù)加法的運(yùn)算定律有哪幾個(gè)?用字母怎樣表示?板書:a+b=b+a(a+b)+c=a+(b+c)2.下面各等式應(yīng)用了什么運(yùn)算定律?①25+36=36+25 ②(17+28)+72=17+(28+72)③6.2+2.3=2.3+6.2 ④(0.5+1.6)+8.4=0.5+(1.6+8.4)教師:加法交換律和結(jié)合律適用于整數(shù)和小數(shù),是否也適用于分?jǐn)?shù)加法呢?這節(jié)課我們就一起來研究.二、學(xué)習(xí)新課(繼續(xù)演示課件:整數(shù)加法運(yùn)算定律推廣到分?jǐn)?shù)加法)下載1.出示:下面每組算式的左右兩邊有什么關(guān)系?

一、說教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級數(shù)學(xué)上冊第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計(jì)算與解決問題相結(jié)合的課,是在學(xué)生學(xué)會(huì)分?jǐn)?shù)混合運(yùn)算的運(yùn)算順序基礎(chǔ)上學(xué)習(xí)的,是對整數(shù)乘法運(yùn)算定律的推廣,也是在學(xué)生學(xué)會(huì)簡單的“求一個(gè)數(shù)的幾分之幾是多少?”的分?jǐn)?shù)乘法問題以及簡單兩步計(jì)算問題基礎(chǔ)上,進(jìn)一步學(xué)習(xí)的較復(fù)雜“求比一個(gè)數(shù)多(或少)幾分之幾的數(shù)是多少?”的分?jǐn)?shù)乘法問題,是后續(xù)學(xué)習(xí)整、小、分?jǐn)?shù)混合運(yùn)算及其簡便運(yùn)算,學(xué)習(xí)復(fù)雜分?jǐn)?shù)應(yīng)用問題的基礎(chǔ)。3、學(xué)情分析:本課是在學(xué)習(xí)完分?jǐn)?shù)混合運(yùn)算(一)之后學(xué)習(xí),學(xué)生已經(jīng)有一定的基礎(chǔ)。4、學(xué)習(xí)目標(biāo):(1)、通過解決“成交量”的問題,呈現(xiàn)不同解題策略,理解“求比一個(gè)數(shù)多幾分之一的數(shù)是多少?”這類問題的數(shù)量關(guān)系,并學(xué)會(huì)解決方法。(2)、通過畫圖正確理解題意,分析數(shù)量關(guān)系,尤其是幫助理解“1+1/5”的含義。進(jìn)一步體會(huì)畫圖是一種分析問題、解決問題的重要策略。

一、說教材:本節(jié)課的內(nèi)容是在前面學(xué)習(xí)了里程表(一)的基礎(chǔ)上進(jìn)行教學(xué)的,是對兩個(gè)數(shù)量間關(guān)系的另一種解讀。前面我們學(xué)習(xí)了用線段圖表示各數(shù)量間的關(guān)系,本節(jié)課我們繼續(xù)學(xué)習(xí)在線段圖中兩數(shù)量間的關(guān)系。本節(jié)課的學(xué)習(xí)內(nèi)容是通過結(jié)束里程數(shù)減去開始里程數(shù)得到汽車行駛里程數(shù),理解這種關(guān)系可以用測量來進(jìn)行類比練習(xí)。讓學(xué)生明白其中道理。本節(jié)教材首先呈現(xiàn)一個(gè)出租車一周行駛里程表,引導(dǎo)學(xué)生先把表中的數(shù)據(jù)用線段中的點(diǎn)來表示,通過各點(diǎn)的關(guān)系來確定每天行駛的里程數(shù)。本節(jié)課在教學(xué)后的練習(xí)中,把這種方法拓展電表度數(shù)計(jì)算等,讓學(xué)生學(xué)會(huì)舉一反三的數(shù)學(xué)學(xué)習(xí)方法。二、說教學(xué)目標(biāo)1、通過把里程表中的數(shù)據(jù)變成線段圖中的各點(diǎn),理解數(shù)量間的關(guān)系。2,運(yùn)用線段圖來解決生活中的實(shí)際問題。

一、說教材1、教學(xué)內(nèi)容:本課內(nèi)容選自2013人教版小學(xué)數(shù)學(xué)二年級上冊第一單元《長度單位》例1、例2、例3的教學(xué)內(nèi)容。 2、教材所處的地位和作用本課是在學(xué)生已經(jīng)對長短的概念有了初步的認(rèn)識(shí),并學(xué)會(huì)直觀比較一些物體長短的基礎(chǔ)上來學(xué)習(xí)一些計(jì)量長度的知識(shí),這些知識(shí)可以幫助學(xué)生認(rèn)識(shí)長度單位,初步建立1厘米的長度觀念。 3、學(xué)情分析二年級學(xué)生經(jīng)過一年的學(xué)習(xí),已經(jīng)認(rèn)識(shí)了100以內(nèi)的數(shù),學(xué)會(huì)了一些簡單的統(tǒng)計(jì)方法。這些知識(shí)儲(chǔ)備為我們進(jìn)一步學(xué)習(xí)新知識(shí)打下基礎(chǔ)。二、說教學(xué)目標(biāo)1、知識(shí)與技能目標(biāo):統(tǒng)一長度單位,建立1厘米的觀念,會(huì)用厘米測量。2、情感目標(biāo):在小組合作測量的過程中,培養(yǎng)學(xué)生樂于探究的學(xué)習(xí)態(tài)度,學(xué)會(huì)與他人合作。體驗(yàn)知識(shí)的形成過程,進(jìn)一步體驗(yàn)學(xué)習(xí)成功帶來的喜悅。

除數(shù)是整數(shù)的小數(shù)除法的計(jì)算步驟和試商方法與整數(shù)除法基本相同。它是在整數(shù)除法的基礎(chǔ)上進(jìn)行教學(xué)的。又是學(xué)生以后學(xué)習(xí)小數(shù)除法的基礎(chǔ),必須溝通小數(shù)除法和整數(shù)除法的聯(lián)系,抓住新舊知識(shí)的連接點(diǎn),緊密結(jié)合現(xiàn)實(shí)情境,展示學(xué)生對小數(shù)除法計(jì)算方法的探究過程,突出計(jì)算方法的教學(xué),在掌握計(jì)算方法的同時(shí)更要理解算理。二.教學(xué)目標(biāo):1.通過自主探究、合作交流,理解小數(shù)除以整數(shù)的計(jì)算方法。2.正確地進(jìn)行小數(shù)除以整數(shù)的計(jì)算,并能解決簡單的實(shí)際問題。3.培養(yǎng)學(xué)生比較、分析和歸納等思維能力;以及類比、遷移的學(xué)習(xí)能力。4.通過學(xué)習(xí)活動(dòng),培養(yǎng)積極的學(xué)習(xí)態(tài)度,樹立學(xué)好數(shù)學(xué)的信心。5.讓學(xué)生感受數(shù)學(xué)與生活的密切聯(lián)系,培養(yǎng)學(xué)習(xí)數(shù)學(xué)的興趣。重點(diǎn)難點(diǎn):正確地進(jìn)行小數(shù)除以整數(shù)的計(jì)算,并能解決簡單的實(shí)際問題是本課的重點(diǎn),本課的難點(diǎn)是理解小數(shù)除以整數(shù)的計(jì)算方法,理解小數(shù)點(diǎn)為什么要對齊。

這樣充分尊重學(xué)生的獨(dú)立思考的過程與結(jié)果,鼓勵(lì)學(xué)生想出多種方法計(jì)算,在學(xué)生匯報(bào)交流、反饋、評價(jià)中初步感受到轉(zhuǎn)化的數(shù)學(xué)思想,獲得成功的學(xué)習(xí)體驗(yàn),之后教師評價(jià):大家能把新的問題轉(zhuǎn)化成已有的經(jīng)驗(yàn)來解決,這種分析思考的方法很好,你們還能提出類似的問題嗎?進(jìn)而引入進(jìn)一步的探索當(dāng)中,教師作出這樣的提示,這道題沒有元角分,你們能把它也轉(zhuǎn)化成已經(jīng)學(xué)過的乘法算式嗎?在學(xué)生獨(dú)立思考計(jì)算的基礎(chǔ)上,組織小組討論,給每個(gè)學(xué)生展示自己思維的機(jī)會(huì),教師深入小組收集信息,然后組織全班討論,揭示算理,得出計(jì)算的方法。這一過程要重點(diǎn)突出算理的探索,使學(xué)生認(rèn)識(shí)到小數(shù)乘法與整數(shù)乘法的聯(lián)系,利用積變化的規(guī)律合理解釋算理,通過學(xué)生親身經(jīng)歷,主動(dòng)參與,積極思考,自學(xué)交流等活動(dòng)過程,使學(xué)生真正獲得數(shù)學(xué)的知識(shí)和學(xué)習(xí)方法。

⑴、理解小數(shù)乘法交換律、結(jié)合律和分配律的意義,能運(yùn)用運(yùn)算定律進(jìn)行小數(shù)的計(jì)算簡便。⑵、經(jīng)歷發(fā)現(xiàn)歸納小數(shù)乘法交換律、結(jié)合律、分配律的全過程。學(xué)習(xí)“猜測—驗(yàn)證”的科學(xué)思維方式,提高類比、分析、概括的能力。⑶、在合作交流的學(xué)習(xí)活動(dòng)中,提高人際交往能力。4、教學(xué)重點(diǎn)、難點(diǎn)從猜測—驗(yàn)證中歸納乘法交換律、結(jié)合律和分配律。二、教法和學(xué)法1、充分發(fā)揮學(xué)生的主體作用,在教學(xué)中注意讓學(xué)生自主探索、發(fā)現(xiàn)規(guī)律、理解規(guī)律,通過猜測—驗(yàn)證,引導(dǎo)啟發(fā)學(xué)生發(fā)現(xiàn)規(guī)律。引導(dǎo)學(xué)生積極、主動(dòng)地參與到知識(shí)的形成過程中去。2、自始至終注意培養(yǎng)學(xué)生觀察、比較、抽象概括能力,教給學(xué)生觀察、比較、抽象概括的方法。在教學(xué)中不僅引導(dǎo)學(xué)生有序地觀察比較,還充分運(yùn)用小組合作討論的手段,進(jìn)行小組合作討論,各抒己見,取長補(bǔ)短,在觀察到的感性材料的基礎(chǔ)上加以抽象概括,形成結(jié)論。

2、試做例題,掌握轉(zhuǎn)化方法明確轉(zhuǎn)化原理后,讓學(xué)生試算例題。在試做的基礎(chǔ)上引導(dǎo)學(xué)生進(jìn)行觀察比較,抽象出轉(zhuǎn)化時(shí)小數(shù)點(diǎn)的移位方法,最后概括總結(jié)出移位的法則。具體做法如下:1、我認(rèn)為小數(shù)除法如果按照教材按部就班教學(xué)有點(diǎn)不合理的,不利于學(xué)生從整體上把握小數(shù)除法,不利于學(xué)生對知識(shí)的建構(gòu)。因此,我選擇了重組教材。(把例5例6有機(jī)的結(jié)合在一起的同時(shí)也新增加了一個(gè)例題,那就是被除數(shù)小數(shù)位數(shù)比除數(shù)的小數(shù)位數(shù)多)。例5、例6和新增加例題的教學(xué),引導(dǎo)學(xué)生概括總結(jié)出轉(zhuǎn)化時(shí)移位的方法,同時(shí)在此基礎(chǔ)上歸納出除數(shù)是小數(shù)的除法計(jì)算法則。在得出計(jì)算法則后,還要注意強(qiáng)調(diào):(1)小數(shù)點(diǎn)向右移動(dòng)的位數(shù)取決于除數(shù)的小數(shù)位數(shù),而不由被除數(shù)的小數(shù)位數(shù)確定。(2)整數(shù)除法中,兩個(gè)數(shù)相除的商不會(huì)大于被除數(shù),而在小數(shù)除法中,當(dāng)除數(shù)小于1時(shí),商反而比被除數(shù)大。

在學(xué)習(xí)本課內(nèi)容以前,學(xué)生已經(jīng)系統(tǒng)地學(xué)習(xí)了整數(shù)四則混合運(yùn)算和小數(shù)四則計(jì)算,為本節(jié)課內(nèi)容的學(xué)習(xí)打下了基礎(chǔ),由于小數(shù)四則混合運(yùn)算的運(yùn)算順序同整數(shù)四則混合運(yùn)算的運(yùn)算順序完全一樣,針對這一點(diǎn),本課教學(xué)確定的教學(xué)目的是使學(xué)生熟記小數(shù)四則混合運(yùn)算順序,提高計(jì)算能力。使學(xué)生熟練地掌握小數(shù)四則混合運(yùn)算的運(yùn)算順序,正確、迅速地進(jìn)行小數(shù)四則混合式題的運(yùn)算,是本課的教學(xué)重點(diǎn)。教學(xué)難點(diǎn)是:1.能否正確把握運(yùn)算順序。2.能否正確標(biāo)明根據(jù)以上教學(xué)目的,為了更好地突出重點(diǎn),突破難點(diǎn),在教學(xué)中遵循大綱的要求,從簡單入手。例1是最簡單的兩步計(jì)算題,讓學(xué)生熟悉一下運(yùn)算順序。再過渡到較復(fù)雜的問題。例2是三步計(jì)算帶小括號的較復(fù)雜的四則混算題,在運(yùn)算過程中出現(xiàn)了除不盡的情況,應(yīng)說明計(jì)算過程中,當(dāng)除得的商超過兩位小數(shù)時(shí),一般只需保留兩位小數(shù),再進(jìn)行計(jì)算。最后進(jìn)入到教學(xué)重點(diǎn)、難點(diǎn)階段。

2、教材簡析循環(huán)小數(shù)是在學(xué)生學(xué)習(xí)了小數(shù)除法的意義、小數(shù)除法的計(jì)算及商的近似值的基礎(chǔ)上進(jìn)行教學(xué)的。這部分內(nèi)容概念較多,又比較抽象,是教學(xué)的一個(gè)難點(diǎn)。課本的例8,是教學(xué)從某一位起,一個(gè)數(shù)字重復(fù)出現(xiàn)的情況,為認(rèn)識(shí)循環(huán)小數(shù)提供感性材料。例9通過計(jì)算兩道除法式題,呈現(xiàn)了除不盡時(shí)商的兩種情況:一種是從某位起重復(fù)某個(gè)數(shù)字;另一種是從某位起幾個(gè)數(shù)字依次不斷重復(fù)出現(xiàn)。由此引出循環(huán)小數(shù)的概念并介紹循環(huán)小數(shù)的簡便記法。接著教材用想一想的方式組織學(xué)生討論“兩個(gè)數(shù)相除,如果不能得到整數(shù)商,所得到的商會(huì)有哪些情況”。由兩個(gè)數(shù)相除時(shí)商的兩種情況,介紹有限小數(shù)和無限小數(shù)的概念。以前學(xué)生對小數(shù)概念的認(rèn)識(shí)僅限于有限小數(shù),到學(xué)習(xí)了循環(huán)小數(shù)以后,小數(shù)概念的內(nèi)涵進(jìn)一步擴(kuò)展了,學(xué)生認(rèn)識(shí)到除了有限小數(shù)以外,還有無限小數(shù),循環(huán)小數(shù)就是一種無限小數(shù)。

《較復(fù)雜的小數(shù)乘法》是第九冊第一單元《小數(shù)的乘法和除法》的第三節(jié)。本 節(jié)課的教學(xué)內(nèi)容是教科書第3頁的例3、例4。這一教材是在學(xué)生學(xué)習(xí)了小數(shù)乘法的意義(小數(shù)乘以整數(shù)、一個(gè)數(shù)乘以小數(shù))、小數(shù)乘法的計(jì)算法則以及小數(shù)點(diǎn)位置 移動(dòng)引起小數(shù)大小的變化的基礎(chǔ)上進(jìn)行教學(xué)的,它是小數(shù)乘法計(jì)算法則的引伸和補(bǔ)充,同時(shí)也是學(xué)生今后進(jìn)一步學(xué)習(xí)小數(shù)四則混合運(yùn)算的基礎(chǔ)。本節(jié)課 的教學(xué)目的是:1、使學(xué)生進(jìn)一步掌握小數(shù)乘法的計(jì)算法則,懂得在點(diǎn)積的小數(shù)點(diǎn)時(shí),乘得的積的小數(shù)位數(shù)不夠的,要在前面用0補(bǔ)足;2、使學(xué)生初步掌握“當(dāng)乘 數(shù)比1小時(shí),積比被乘數(shù)?。划?dāng)乘數(shù)比1大時(shí),積比被乘數(shù)大”;3、培養(yǎng)學(xué)生的計(jì)算能力,自學(xué)能力和概括能力。本節(jié)課的教學(xué)重點(diǎn)是:讓學(xué)生掌握在定積的小數(shù) 時(shí),位數(shù)不夠的會(huì)用0補(bǔ)足。
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。