
1)正方形的邊長(zhǎng)為4cm,則周長(zhǎng)為( ),面積為( ) ,對(duì)角線長(zhǎng)為( );2))正方形ABCD中,對(duì)角線AC、BD交于O點(diǎn),AC=4 cm,則正方形的邊長(zhǎng)為( ), 周長(zhǎng)為( ),面積為( )3)在正方形ABCD中,AB=12 cm,對(duì)角線AC、BD相交于O,OA= ,AC= 。4) 1、正方形具有而矩形不一定具有的性質(zhì)是( ) A、四個(gè)角相等 B、對(duì)角線互相垂直平分 C、對(duì)角互補(bǔ) D、對(duì)角線相等. 5)、正方形具有而菱形不一定具有的性質(zhì)( ) A、四條邊相等 B對(duì)角線互相垂直平分 C對(duì)角線平分一組對(duì)角 D對(duì)角線相等. 6)、正方形對(duì)角線長(zhǎng)6,則它的面積為_(kāi)________ ,周長(zhǎng)為_(kāi)_______. 7)、順次連接正方形各邊中點(diǎn)的小正方形的面積是原正方形面積的( )A.1/2 B.1/3 C.1/4 D.1/ 5四:范例講解:1、(課本P21例1)學(xué)生自己閱讀課本內(nèi)容、注意證明過(guò)程的書(shū)寫(xiě)2、 如圖,分別以△ABC的邊AB,AC為一邊向外畫(huà)正方形AEDB和正方形ACFG,連接CE,BG.求證:BG=CE

四、范例學(xué)習(xí)、理解領(lǐng)會(huì)例2 某校墻邊有甲、乙兩根木桿。已知乙木桿的高度為1.5m.(1)某一時(shí)刻甲木桿在陽(yáng)光下的影子如圖5-6所示,你能畫(huà)出此時(shí)乙木桿的影子嗎?(用線段表示影子)(2)在圖中,當(dāng)乙木桿移動(dòng)到什么位置時(shí),其影子剛好不落在墻上?(3)在(2)的情況下,如果測(cè)得甲、乙木桿的影子長(zhǎng)分別為1.24m和1m,那么你能求出甲木桿的高度嗎?學(xué)生畫(huà)圖、 實(shí)驗(yàn)、觀察、探索。五、隨堂練習(xí)課本隨堂練習(xí) 學(xué)生觀察、畫(huà)圖、合作交流。六、課堂總結(jié)本節(jié)課通過(guò)各種實(shí)踐活動(dòng),促進(jìn)大家對(duì)內(nèi)容的理解,本課內(nèi)容,要體會(huì)物體在太陽(yáng)光下形成的不同影子,在操作中觀察不 同時(shí)刻影子的方向和大小變化特征。在同一時(shí)刻,物體的影子與它們的高度成比 例.

合探2 與同伴合作,兩個(gè)人分別畫(huà)△ABC和△A′B′ C′,使得∠A和∠A′都等于∠α,∠B和∠B′都等于∠β,此時(shí),∠C與∠C′相等嗎?三邊的比 相等嗎?這樣的兩個(gè)三角形相似嗎?改變∠α,∠β的大小,再試一試.四、導(dǎo)入定理判定 定理1:兩角分別相等的兩個(gè)三角形相似.這個(gè)定理的 出 現(xiàn)為判定兩三角形相似增加了一條新的途徑.例:如圖,D ,E分別是△ABC的邊AB,AC上的點(diǎn),DE∥BC,AB= 7,AD=5,DE=10,求B C的長(zhǎng)。解:∵DE∥BC,∴∠ADE=∠B,∠AED=∠C.∴△ADE∽△ABC(兩角分別相等的兩 個(gè)三角形相似).∴ ADAB=DEBC.∴BC=AB×DEAD = 7×105=14.五、學(xué)生練習(xí):1. 討論隨堂練 習(xí)第1題有一個(gè)銳角相等的兩個(gè)直角三角形是否相似?為什么?2.自己獨(dú)立完成隨堂練習(xí)第2題六、小結(jié)本節(jié)主要學(xué)習(xí)了相似三角形的定義及相似三角形的判定定理1,一定要掌握好這個(gè)定理.七、作業(yè):

當(dāng)Δ=l2-4mn<0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的一個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn=0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的兩個(gè)點(diǎn)P;當(dāng)Δ=l2-4mn>0時(shí),存在以P、A、B三點(diǎn)為頂點(diǎn)的三角形與以P、C、D三點(diǎn)為頂點(diǎn)的三角形相似的三個(gè)點(diǎn)P.方法總結(jié):由于相似情況不明確,因此要分兩種情況討論,注意要找準(zhǔn)對(duì)應(yīng)邊.三、板書(shū)設(shè)計(jì)相似三角形判定定理的證明判定定理1判定定理2判定定理3本課主要是證明相似三角形判定定理,以學(xué)生的自主探究為主,鼓勵(lì)學(xué)生獨(dú)立思考,多角度分析解決問(wèn)題,總結(jié)常見(jiàn)的輔助線添加方法,使學(xué)生的推理能力和幾何思維都獲得提高,培養(yǎng)學(xué)生的探索精神和合作意識(shí).

易錯(cuò)提醒:利用b2-4ac判斷一元二次方程根的情況時(shí),容易忽略二次項(xiàng)系數(shù)不能等于0這一條件,本題中容易誤選A.【類(lèi)型三】 根的判別式與三角形的綜合應(yīng)用已知a,b,c分別是△ABC的三邊長(zhǎng),當(dāng)m>0時(shí),關(guān)于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個(gè)相等的實(shí)數(shù)根,請(qǐng)判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關(guān)系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個(gè)相等的實(shí)數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結(jié):根據(jù)一元二次方程根的情況,利用判別式得到關(guān)于一元二次方程系數(shù)的等式或不等式,再結(jié)合其他條件解題.

1.多媒體的合理應(yīng)用,可極大的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)效果.在本節(jié)課的“情境引入”這一教學(xué)環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學(xué)生以視覺(jué)沖擊,產(chǎn)生了視覺(jué)和心理的震撼,這樣在課堂“第一時(shí)間”抓住了學(xué)生的注意力、極大的激發(fā)了學(xué)生的學(xué)習(xí)熱情,將十分有利于后面教學(xué)活動(dòng)的開(kāi)展,提高課堂教學(xué)效果.2.附有挑戰(zhàn)性的“問(wèn)題(或活動(dòng))”、層層深入的“問(wèn)題串”可激發(fā)學(xué)生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動(dòng)”這一教學(xué)環(huán)節(jié)中的“做一做”設(shè)計(jì)的4個(gè)活動(dòng),由簡(jiǎn)單的“模仿”到“創(chuàng)作設(shè)計(jì)、觀察思考”循序漸進(jìn)、挑戰(zhàn)性逐漸增大,不斷激發(fā)學(xué)生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學(xué)運(yùn)用”這一教學(xué)環(huán)節(jié)中的“例2”設(shè)計(jì)的2個(gè)問(wèn)題層層深入,現(xiàn)實(shí)情境味很濃,學(xué)生做起來(lái)饒有興趣.

用你的語(yǔ)言描述一下配方法解一元二次方程的基本步驟和需注意的問(wèn)題。 教師引導(dǎo)學(xué)生進(jìn)行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項(xiàng)。鞏固對(duì)課堂知識(shí)的理解和掌握,同時(shí)進(jìn)一步體會(huì)解一元二次方程時(shí)降次的基本策略和轉(zhuǎn)化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內(nèi)容,又有讓學(xué)有余力的學(xué)生有思考和提升的空間。思考題為后面深入研究配方法,完善對(duì)配方法的認(rèn)識(shí)做準(zhǔn)備。 同時(shí)讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)在實(shí)際生活中的作用,感受數(shù)學(xué)的美。五、板書(shū)設(shè)計(jì)我將板書(shū)分成了兩部分,重點(diǎn)突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當(dāng)?shù)木毩?xí),簡(jiǎn)單明了,重點(diǎn)突出。六、教學(xué)評(píng)價(jià)與反思本節(jié)課我根據(jù)學(xué)生的特點(diǎn)采用合作交流探究式學(xué)西方法教學(xué),讓學(xué)生動(dòng)起來(lái),感受數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。讓學(xué)生更加愛(ài)學(xué)數(shù)學(xué)。

4.x的值是否可以任意取?如果不能任意取,請(qǐng)求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤(rùn)為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問(wèn)題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個(gè)? (各有1個(gè))(2)多項(xiàng)式-2x2+20和-100x2+100x+200分別是幾次多項(xiàng)式?(分別是二次多項(xiàng)式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點(diǎn)? (都是用自變量的二次多項(xiàng)式來(lái)表示的)(4)本章導(dǎo)圖中的問(wèn)題以及P1頁(yè)的問(wèn)題2有什么共同特點(diǎn)?讓學(xué)生討論、歸結(jié)為:自變量x為何值時(shí),函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項(xiàng)的系數(shù),c叫作常數(shù)項(xiàng).

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類(lèi)問(wèn)題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第8題三、板書(shū)設(shè)計(jì)二次函數(shù)1.二次函數(shù)的概念2.從實(shí)際問(wèn)題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見(jiàn)的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實(shí)世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實(shí)際問(wèn)題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過(guò)實(shí)例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡(jiǎn)單的實(shí)際問(wèn)題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過(guò)程中,讓學(xué)生體驗(yàn)從問(wèn)題出發(fā)到列二次函數(shù)解析式的過(guò)程,體驗(yàn)用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

教學(xué)目標(biāo):1、理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。2、了解計(jì)算一個(gè)銳角的正切值的方法。教學(xué)重點(diǎn):理解并掌握正切的含義,會(huì)在直角三角形中求出某個(gè)銳角的正切值。教學(xué)難點(diǎn):計(jì)算一個(gè)銳角的正切值的方法。教學(xué)過(guò)程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計(jì)了多種形式的臺(tái)階。下列圖中的兩個(gè)臺(tái)階哪個(gè)更陡?你是怎么判斷的?圖(1) 圖(2)[點(diǎn)撥]可將這兩個(gè)臺(tái)階抽象地看成兩個(gè)三角形答:圖 的臺(tái)階更陡,理由 二、探索活動(dòng)1、思考與探索一:除了用臺(tái)階的傾斜角度大小外,還可以如何描述臺(tái)階的傾斜程度呢?① 可通過(guò)測(cè)量BC與AC的長(zhǎng)度,② 再算出它們的比,來(lái)說(shuō)明臺(tái)階的傾斜程度。(思考:BC與AC長(zhǎng)度的比與臺(tái)階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說(shuō)出你的理由嗎?答:________________________.2、思考與探索二:

已知一水壩的橫斷面是梯形ABCD,下底BC長(zhǎng)14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長(zhǎng)為46m,求它的上底的長(zhǎng)(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過(guò)點(diǎn)A作AE⊥BC于E,過(guò)點(diǎn)D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過(guò)點(diǎn)A作AE⊥BC,過(guò)點(diǎn)D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長(zhǎng)約為3.1m.方法總結(jié):考查對(duì)坡度的理解及梯形的性質(zhì)的掌握情況.解決問(wèn)題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

方法總結(jié):垂徑定理雖是圓的知識(shí),但也不是孤立的,它常和三角形等知識(shí)綜合來(lái)解決問(wèn)題,我們一定要把知識(shí)融會(huì)貫通,在解決問(wèn)題時(shí)才能得心應(yīng)手.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課后鞏固提升”第2題【類(lèi)型三】 動(dòng)點(diǎn)問(wèn)題如圖,⊙O的直徑為10cm,弦AB=8cm,P是弦AB上的一個(gè)動(dòng)點(diǎn),求OP的長(zhǎng)度范圍.解析:當(dāng)點(diǎn)P處于弦AB的端點(diǎn)時(shí),OP最長(zhǎng),此時(shí)OP為半徑的長(zhǎng);當(dāng)OP⊥AB時(shí),OP最短,利用垂徑定理及勾股定理可求得此時(shí)OP的長(zhǎng).解:作直徑MN⊥弦AB,交AB于點(diǎn)D,由垂徑定理,得AD=DB=12AB=4cm.又∵⊙O的直徑為10cm,連接OA,∴OA=5cm.在Rt△AOD中,由勾股定理,得OD=OA2-AD2=3cm.∵垂線段最短,半徑最長(zhǎng),∴OP的長(zhǎng)度范圍是3cm≤OP≤5cm.方法總結(jié):解題的關(guān)鍵是明確OP最長(zhǎng)、最短時(shí)的情況,靈活利用垂徑定理求解.容易出錯(cuò)的地方是不能確定最值時(shí)的情況.

解析:首先求得圓的半徑長(zhǎng),然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點(diǎn)P在⊙O′的外部;QO′=1<2,則點(diǎn)Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點(diǎn)R在圓上.方法總結(jié):注意運(yùn)用平面內(nèi)兩點(diǎn)之間的距離公式,設(shè)平面內(nèi)任意兩點(diǎn)的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類(lèi)型四】 點(diǎn)與圓的位置關(guān)系的實(shí)際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無(wú)線電信號(hào)發(fā)射塔.已知,該發(fā)射塔發(fā)射的無(wú)線電信號(hào)的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車(chē)車(chē)速為60千米/時(shí).(1)當(dāng)客車(chē)從A城出發(fā)開(kāi)往C城時(shí),某人立即打開(kāi)無(wú)線電收音機(jī),客車(chē)行駛了0.5小時(shí)的時(shí)候,接收信號(hào)最強(qiáng).此時(shí),客車(chē)到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號(hào)越強(qiáng))?(2)客車(chē)從A城到C城共行駛2小時(shí),請(qǐng)你判斷到C城后還能接收到信號(hào)嗎?請(qǐng)說(shuō)明理由.

我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱(chēng)圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱(chēng)中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫(huà)出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類(lèi)型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時(shí),tanA>1.變式訓(xùn)練:見(jiàn)《學(xué)練優(yōu)》本課時(shí)練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類(lèi)型四】 與三角函數(shù)有關(guān)的探究性問(wèn)題在Rt△ABC中,∠C=90°,D為BC邊(除端點(diǎn)外)上的一點(diǎn),設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因?yàn)樵凇鰽BD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進(jìn)行比較是解題的關(guān)鍵.

[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會(huì)在直角三角形中求出某個(gè)銳角的正弦和余弦值。2、能用函數(shù)的觀點(diǎn)理解正弦、余弦和正切。[教學(xué)重點(diǎn)與難點(diǎn)] 在直角三角形中求出某個(gè)銳角的正弦和余弦值。[教學(xué)過(guò)程] 一、情景創(chuàng)設(shè)1、問(wèn)題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對(duì)位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對(duì)位置升高了多少?行走了a m呢?2、問(wèn)題2:在上述問(wèn)題中,他在水平方向又分別前進(jìn)了多遠(yuǎn)?二、探索活動(dòng)1、思考:從上面的兩個(gè)問(wèn)題可以看出:當(dāng)直角三角形的一個(gè)銳角的大小已確定時(shí),它的對(duì)邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對(duì)邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫(xiě)出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長(zhǎng)定理得∠BFO=∠EFO,從而得到這三個(gè)角應(yīng)是60°,然后結(jié)合已知的正方形的邊長(zhǎng),也是圓的直徑,利用30°的直角三角形的知識(shí)進(jìn)行計(jì)算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長(zhǎng)為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點(diǎn)P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問(wèn)題的結(jié)論有兩種可能,所以具有開(kāi)放的特征,在假設(shè)存在性以后進(jìn)行的推理或計(jì)算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

[設(shè)計(jì)說(shuō)明]:只給出情景故事,感知了一個(gè)大數(shù),這樣還不能引起學(xué)生對(duì)大數(shù)的深刻認(rèn)識(shí),所以再給出宇宙星空中的這些大數(shù),讓學(xué)生讀讀、看看這些數(shù),引起學(xué)生強(qiáng)烈的認(rèn)知上的沖突,形成一種心理上的想讀、想寫(xiě)的求知欲望。(二)、引出問(wèn)題、探索新知在上面的例子中,我們遇到了幾個(gè)很大的數(shù),看起來(lái)、讀起來(lái)、寫(xiě)起來(lái)都不方便,有沒(méi)有簡(jiǎn)單的表示法呢?分以下步驟完成。1、回憶100 ,1000,10000,能寫(xiě)成10( )2、300=3×100=3×10( )3000=3×1000=3×10()30000=3×10000=3×10()3、再由學(xué)生完成上面4個(gè)例子中的數(shù)的表示。(學(xué)生對(duì)160 000 000 000這個(gè)數(shù)可能表示為、16×1010,教師要利用學(xué)生這種錯(cuò)誤,強(qiáng)調(diào)a的范圍)4、教師給出科學(xué)記數(shù)法表示:a×10( )(1≤a<10)。[設(shè)計(jì)說(shuō)明]:通過(guò)層層遞進(jìn)的探究設(shè)計(jì),啟發(fā)學(xué)生成功地發(fā)現(xiàn)“科學(xué)記數(shù)法”的表示方法,同時(shí)又通過(guò)學(xué)生示錯(cuò),讓學(xué)生記住a的范圍,體現(xiàn)了以學(xué)生為主的探究式教學(xué)。

一、教材分析(一)、內(nèi)容、地位和作用這節(jié)課是義務(wù)教育課程標(biāo)準(zhǔn)實(shí)驗(yàn)教科書(shū)北師大版七年級(jí)第6章《數(shù)據(jù)的收集與表示》第一節(jié)《數(shù)據(jù)的收集》的第一課時(shí)。在此之前,學(xué)生在已經(jīng)學(xué)習(xí)了一些初步的數(shù)據(jù)的處理問(wèn)題,對(duì)運(yùn)用數(shù)據(jù)去解決日常生活中的實(shí)際問(wèn)題已有所了解,知道了運(yùn)用數(shù)據(jù)的價(jià)值。本節(jié)課是在此基礎(chǔ)上對(duì)數(shù)據(jù)的收集又有了更進(jìn)一步的學(xué)習(xí)與挖掘。為后面運(yùn)用數(shù)據(jù)的知識(shí)去分析一些現(xiàn)象打下基礎(chǔ)。新的義務(wù)教育課程標(biāo)準(zhǔn)與我國(guó)以往的數(shù)學(xué)課程相比,在教學(xué)內(nèi)容上大大加強(qiáng)了統(tǒng)計(jì)和概率,在教學(xué)方法上積極倡導(dǎo)自主探索和合作學(xué)習(xí),幫助學(xué)生通過(guò)反復(fù)觀察,了解不確定的現(xiàn)象也能夠表現(xiàn)出規(guī)律,整個(gè)內(nèi)容圍繞真實(shí)的數(shù)據(jù)展開(kāi)教學(xué)。依據(jù)新課程標(biāo)準(zhǔn),在教學(xué)中,應(yīng)注重所學(xué)內(nèi)容與日常生活、自然、社會(huì)和科學(xué)技術(shù)領(lǐng)域的聯(lián)系,使學(xué)生體會(huì)統(tǒng)計(jì)與概率對(duì)制定決策的重要作用。
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。