
方法總結(jié):由絕對(duì)值的定義可知,一個(gè)數(shù)的絕對(duì)值越小,離原點(diǎn)越近.將實(shí)際問題轉(zhuǎn)化為數(shù)學(xué)問題,即為與標(biāo)準(zhǔn)質(zhì)量的差的絕對(duì)值越小,越接近標(biāo)準(zhǔn)質(zhì)量.【類型四】 絕對(duì)值的非負(fù)性已知|x-3|+|y-2|=0,求x+y的值.解析:一個(gè)數(shù)的絕對(duì)值總是大于或等于0,即為非負(fù)數(shù),若兩個(gè)非負(fù)數(shù)的和為0,則這兩個(gè)數(shù)同為0.解:由題意得x-3=0,y-2=0,所以x=3,y=2.所以x+y=3+2=5.方法總結(jié):幾個(gè)非負(fù)數(shù)的和為0,則這幾個(gè)數(shù)都為0.三、板書設(shè)計(jì)絕對(duì)值相反數(shù)絕對(duì)值性質(zhì)→|a|=a(a>0)0(a=0)-a(a<0)互為相反數(shù)的兩個(gè)數(shù)的絕對(duì)值相等兩個(gè)負(fù)數(shù)比較大小:絕對(duì)值大的反而小絕對(duì)值這個(gè)名詞既陌生,又是一個(gè)不易理解的數(shù)學(xué)術(shù)語,是本章的重點(diǎn)內(nèi)容,同時(shí)也是一個(gè)難點(diǎn)內(nèi)容.教材從幾何的角度給出絕對(duì)值的概念,也就是從數(shù)軸上表示數(shù)的點(diǎn)的位置出發(fā),得出定義的.

求證:直角三角形的兩個(gè)銳角互余.解析:分析這個(gè)命題的條件和結(jié)論,根據(jù)已知條件和結(jié)論畫出圖形,寫出已知、求證,并寫出證明過程.已知:如圖所示,在△ABC中,∠C=90°.求證:∠A與∠B互余.證明:∵∠A+∠B+∠C=180°(三角形內(nèi)角和等于180°),又∠C=90°,∴∠A+∠B=180°-∠C=90°.∴∠A與∠B互余.方法總結(jié):解此類題首先根據(jù)題意將文字語言變成符號(hào)語言,畫出圖形,最后再經(jīng)過分析論證,并寫出證明的過程.三、板書設(shè)計(jì)命題分類公理:公認(rèn)的真命題定理:經(jīng)過證明的真命題證明:推理的過程經(jīng)歷實(shí)際情境,初步體會(huì)公理化思想和方法,了解本教材所采用的公理,讓學(xué)生對(duì)真假命題有一個(gè)清楚的認(rèn)識(shí),從而進(jìn)一步了解定理、公理的概念.培養(yǎng)學(xué)生的語言表達(dá)能力.

已知xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),求m和n的值.解析:根據(jù)同類項(xiàng)的概念,可列出含字母m和n的方程組,從而求出m和n.解:因?yàn)閤m-n+1y與-2xn-1y3m-2n-5是同類項(xiàng),所以m-n+1=n-1,①3m-2n-5=1.②整理,得m-2n+2=0,③3m-2n-6=0.④④-③,得2m=8,所以m=4.把m=4代入③,得2n=6,所以n=3.所以當(dāng)m=4,n=3時(shí),xm-n+1y與-2xn-1y3m-2n-5是同類項(xiàng).方法總結(jié):解這類題,就是根據(jù)同類項(xiàng)的定義,利用相同字母的指數(shù)分別相等,列方程組求字母的值.三、板書設(shè)計(jì)用加減法解二元一次方程組的步驟:①變形,使某個(gè)未知數(shù)的系數(shù)絕對(duì)值相等;②加減消元;③解一元一次方程;④求另一個(gè)未知數(shù)的值,得方程組的解.進(jìn)一步理解二元一次方程組的“消元”思想,初步體會(huì)數(shù)學(xué)研究中“化未知為已知”的化歸思想.選擇恰當(dāng)?shù)姆椒ń舛淮畏匠探M,培養(yǎng)學(xué)生的觀察、分析問題的能力.

2.如何找一條線段的黃金分割點(diǎn),以及會(huì)畫黃金矩形.3.能根據(jù)定義判斷某一點(diǎn)是否為一條線段的黃金分割點(diǎn).Ⅳ.課后作業(yè)習(xí)題4.8Ⅴ.活動(dòng)與探究要配制一種新農(nóng)藥,需要兌水稀釋,兌多少才好呢?太濃太稀都不行.什么比例最合適,要通過試驗(yàn)來確定.如果知道稀釋的倍數(shù)在1000和2000之間,那么,可以把1000和2000看作線段的兩個(gè)端點(diǎn),選擇AB的黃金分割點(diǎn)C作為第一個(gè)試驗(yàn)點(diǎn),C點(diǎn)的數(shù)值可以算是1000+(2000-1000)×0.618= 1618.試驗(yàn)的結(jié)果,如果按1618倍,水兌得過多,稀釋效果不理想,可以進(jìn)行第二次試 驗(yàn).這次的試驗(yàn)點(diǎn)應(yīng)該選AC的黃金分割點(diǎn)D,D的位置是1000+(1618-1000)×0.618,約等于1382,如果D點(diǎn)還不理想,可以按黃金分割的方法繼續(xù)試驗(yàn)下去.如果太濃,可以選DC之間的黃金分割 點(diǎn) ;如果太稀,可以選AD之間的黃金分割點(diǎn),用這樣的方法,可以較快地找到合適的濃度數(shù)據(jù).這種方法叫做“黃金分割法”.用這樣的方法進(jìn)行科學(xué)試驗(yàn),可以用最少的試驗(yàn)次數(shù)找到最佳的數(shù)據(jù),既節(jié)省了時(shí)間,也節(jié)約了原材料.●板書設(shè)計(jì)

(2)如果對(duì)應(yīng)著的兩條小路的寬均相等,如圖②,試問小路的寬x與y的比值是多少時(shí),能使小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似?解析:(1)根據(jù)兩矩形的對(duì)應(yīng)邊是否成比例來判斷兩矩形是否相似;(2)根據(jù)矩形相似的條件列出等量關(guān)系式,從而求出x與y的比值.解:(1)矩形A′B′C′D′和矩形ABCD不相似.理由如下:假設(shè)兩個(gè)矩形相似,不妨設(shè)小路寬為xm,則30+2x30=20+2x20,解得x=0.∵由題意可知,小路寬不可能為0,∴矩形A′B′C′D′和矩形ABCD不相似;(2)當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.理由如下:若矩形A′B′C′D′和矩形ABCD相似,則30+2x30=20+2y20,所以xy=32.∴當(dāng)x與y的比值為3:2時(shí),小路四周所圍成的矩形A′B′C′D′和矩形ABCD相似.方法總結(jié):因?yàn)榫匦蔚乃膫€(gè)角均是直角,所以在有關(guān)矩形相似的問題中,只需看對(duì)應(yīng)邊是否成比例,若成比例,則相似,否則不相似.

4、 填表:相反數(shù) 絕對(duì)值21 0 -0.75 5、 畫一條數(shù)軸,在數(shù)軸上分別標(biāo)出絕對(duì)值是6 , 1.2 , 0 的數(shù)6、 計(jì)算:(1) (2) 五、探究學(xué)習(xí)1、某人因工作需要租出租車從A站出發(fā),先向南行駛6 Km至B處,后向北行駛10 Km至 C處,接著又向南行駛7 Km至D處,最后又向北行駛2 Km至E處。請(qǐng)通過列式計(jì)算回答下列兩個(gè)問題:(1) 這個(gè)人乘車一共行駛了多少千米?(2) 這個(gè)人最后的目的地在離出發(fā)地的什么方向上,相隔多少千米 ?2、寫出絕對(duì)值小于3的整數(shù),并把它們記在數(shù)軸上。六、小結(jié)一頭牛耕耘在一塊田 地上,忙碌了一整天,表面上它在原地踏步,沒有踏出這塊土地,但我們說,它付出了艱辛和汗水,因?yàn)樗哌^ 的距離之和,有時(shí)候我們是無法 想象的。這就是今天所學(xué)的絕對(duì)值的意義所在。所以絕對(duì)值是不考慮方向意義時(shí)的一種數(shù)值表示。七、布置作業(yè)做作業(yè)本中相應(yīng)的部分。

一、教學(xué)目標(biāo):1、會(huì)辨認(rèn)基本幾何體(直棱柱、圓柱、圓錐、球等)2、了解直棱柱、圓柱、圓錐的側(cè)面展開圖,能根據(jù)展開圖判斷和制作立體模型;3、能想象基本幾何體的截面形狀;4、會(huì)畫基本幾何體的三視圖,會(huì)判斷簡單物體的三視圖,能根據(jù)三視圖描述幾何體或?qū)嵨镌停?、能從豐富的現(xiàn)實(shí)背景中抽象出空間幾何體和基本平面圖形,進(jìn)一步認(rèn)識(shí)點(diǎn)、線、面。6、獲得一些研究問題的方法和經(jīng)驗(yàn),發(fā)展思維能力,加深理解相關(guān)的數(shù)學(xué)知識(shí)。7、體驗(yàn)數(shù)學(xué)知識(shí)之間的內(nèi)在聯(lián)系,初步形成對(duì)數(shù)學(xué)整體性的認(rèn)識(shí)。教學(xué)重點(diǎn):在具體的情境中,認(rèn)識(shí)一些基本的幾何體,并能描述這些幾何體的特征。教學(xué)難點(diǎn):是描述幾何體的特征,對(duì)幾何體進(jìn)行分類。二、設(shè)疑自探1、梳理本章知識(shí)(一)生活中有哪些你熟悉的圖形?舉例說明.(二)你喜歡哪些幾何體?舉出一個(gè)生活中的物體,使它盡可能地包含不同的幾何體.(三)用自己的語言說一說棱柱的特征?(直棱柱)

一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結(jié)果是:1千克土豆換0.5千克蘋果.當(dāng)稱完帶籃子的土豆重量后,攤主對(duì)小明奶奶說:“別稱籃子的重量了,稱蘋果時(shí)也帶籃子稱,這樣既省事又互不吃虧.”你認(rèn)為攤主的話有道理嗎?請(qǐng)你用所學(xué)的有關(guān)數(shù)學(xué)知識(shí)加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設(shè)土豆重a千克,籃子重b千克,則應(yīng)換蘋果0.5a千克.若不稱籃子,則實(shí)換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結(jié):體現(xiàn)了數(shù)學(xué)在生活中的運(yùn)用.解決問題的關(guān)鍵是讀懂題意,找到所求的量之間的關(guān)系.三、板書設(shè)計(jì)數(shù)學(xué)教學(xué)要緊密聯(lián)系學(xué)生的生活實(shí)際,本節(jié)課從實(shí)際問題入手,引出合并同類項(xiàng)的概念.通過獨(dú)立思考、討論交流等方式歸納出合并同類項(xiàng)的法則,通過例題教學(xué)、練習(xí)等方式鞏固相關(guān)知識(shí).教學(xué)中應(yīng)激發(fā)學(xué)生主動(dòng)參與學(xué)習(xí)的積極性,培養(yǎng)學(xué)生思維的靈活性.

1.會(huì)用度量法和疊合法比較兩個(gè)角的大小.2.理解角的平分線的定義,并能借助角的平分線的定義解決問題.3.理解兩個(gè)角的和、差、倍、分的意義,會(huì)進(jìn)行角的運(yùn)算.一、情境導(dǎo)入同學(xué)們,如圖是我們生活中常用的剪刀模型,現(xiàn)在考考大家,剪刀張開的兩個(gè)角哪個(gè)大呢?二、合作探究探究點(diǎn)一:角的比較在某工廠生產(chǎn)流水線上生產(chǎn)如圖所示的工件,其中∠α稱為工件的中心角,生產(chǎn)要求∠α的標(biāo)準(zhǔn)角度為30°±1°,一名質(zhì)檢員在檢驗(yàn)時(shí),手拿一量角器逐一測量∠α的度數(shù).請(qǐng)你運(yùn)用所學(xué)的知識(shí)分析一下,該名質(zhì)檢員采用的是哪種比較方法?你還能給該質(zhì)檢員設(shè)計(jì)更好的質(zhì)檢方法嗎?請(qǐng)說說你的方法.解析:角的比較方法有測量法和疊合法,其中測量法更具體,疊合更直觀.在質(zhì)檢中,采用疊合法比較快捷.

方法總結(jié):本題考查了利用數(shù)軸,比較數(shù)的大小關(guān)系,對(duì)于含有絕對(duì)值的式子的化簡,要根據(jù)絕對(duì)值內(nèi)的式子的正負(fù),去掉絕對(duì)值符號(hào).探究點(diǎn)四:含括號(hào)的整式的化簡應(yīng)用某商店有一種商品每件成本a元,原來按成本增加b元定出售價(jià),售出40件后,由于庫存積壓,調(diào)整為按售價(jià)的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價(jià)為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價(jià)與后60件的售價(jià)即可確定出總售價(jià);(2)由“利潤=售價(jià)-成本”列出關(guān)系式即可得到結(jié)果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價(jià)為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結(jié):解決此類題目的關(guān)鍵是熟記去括號(hào)法則和熟練運(yùn)用合并同類項(xiàng)的法則.

第五環(huán)節(jié):課堂小結(jié)內(nèi)容:師生相互交流總結(jié)解二元一次方程組的基本思路是“消元”,即把“二元”變?yōu)椤耙辉保?解二元一次方程組的第一種解法——代入消元法,其主要步驟是:將其中的一個(gè)方程中的某個(gè)未知數(shù)用含有另一個(gè)未知數(shù)的代數(shù)式表示出來,并代入另一個(gè)方程中,從而消去一個(gè)未知數(shù),化二元一次方程組為一元一次方程.解這個(gè)一元一次方程,便可得到一個(gè)未知數(shù)的值,再將所求未知數(shù)的值代入變形后的方程,便求出了一對(duì)未知數(shù)的值.即求得了方程組的解.目的:鼓勵(lì)學(xué)生通過本節(jié)課的學(xué)習(xí),談?wù)勛约旱氖斋@與感受,加深對(duì) “溫故而知新” 的體會(huì),知道“學(xué)而時(shí)習(xí)之”.設(shè)計(jì)效果:學(xué)生能夠在課堂上暢所欲言,并通過自己的歸納總結(jié),進(jìn)一步鞏固了所學(xué)知識(shí).第六環(huán)節(jié):布置作業(yè)課本習(xí)題5.2教學(xué)設(shè)計(jì)反思1.引入自然.二元一次方程組的解法是學(xué)習(xí)二元一次方程組的重要內(nèi)容.教材通過上一小節(jié)的實(shí)際問題,比較一元一次方程的列法和解法,從而自然引入二元一次方程組的代入消元解法.

在探究估算方法的時(shí)候,教師要注重適時(shí)的引導(dǎo),以免讓學(xué)生無從下手.在教學(xué)過程中一定要讓學(xué)生體會(huì)估算的實(shí)用價(jià)值,了解到“數(shù)學(xué)既來源與生活,又回歸到生活為生活服務(wù)”.(二)課堂評(píng)價(jià)的一些思考在教學(xué)中要多鼓勵(lì)學(xué)生用自己的語言表達(dá)他們的想法,在估算的過程中多給予適當(dāng)?shù)囊龑?dǎo)和評(píng)價(jià),讓學(xué)生逐步把握估算的方法,找到解決問題的信心.比如對(duì)“畫能掛上去嗎”這個(gè)問題情境,學(xué)生可能提出不同的看法,有些學(xué)生可能認(rèn)為可以掛上去,因?yàn)槿诉€有身高,完全可以彌補(bǔ)梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學(xué)生可能認(rèn)為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應(yīng)該給予肯定,這樣才能激發(fā)學(xué)生思考問題的熱情,調(diào)動(dòng)學(xué)生探究問題的積極性.作為教師,一定要尊重學(xué)生的個(gè)體差異,滿足多樣化的學(xué)習(xí)需要,鼓勵(lì)探究方式、表達(dá)方式和解題方法的多樣化.

【類型三】 已知方程組的解,用代入法求待定系數(shù)的值 已知x=2,y=1是二元一次方程組ax+by=7,ax-by=1的解,則a-b的值為()A.1 B.-1 C.2 D.3解析:把解代入原方程組得2a+b=7,2a-b=1,解得a=2,b=3,所以a-b=-1.故選B.方法總結(jié):解這類題就是根據(jù)方程組解的定義求,即將解代入方程組,得到關(guān)于字母系數(shù)的方程組,解方程組即可.三、板書設(shè)計(jì)解二元一,次方程組)基本思路是“消元”代入法解二元一次方程組的一般步驟回顧一元一次方程的解法,借此探索二元一次方程組的解法,使得學(xué)生的探究有很好的認(rèn)知基礎(chǔ),探究顯得十分自然流暢.充分體現(xiàn)了轉(zhuǎn)化與化歸思想.引導(dǎo)學(xué)生充分思考和體驗(yàn)轉(zhuǎn)化與化歸思想,增強(qiáng)學(xué)生的觀察歸納能力,提高學(xué)生的學(xué)習(xí)能力.

一、情境導(dǎo)入神舟十號(hào)是中國神舟號(hào)系列飛船之一,主要由推進(jìn)艙(服務(wù)艙)、返回艙、軌道艙組成.神舟十號(hào)在酒泉衛(wèi)星發(fā)射中心“921工位”,于2013年6月11日17時(shí)38分02.666秒發(fā)射,由長征二號(hào)F改進(jìn)型運(yùn)載火箭(遙十)“神箭”成功發(fā)射.在軌飛行十五天左右,加上發(fā)射與返回,其中停留天宮一號(hào)十二天,共搭載三位航天員——聶海勝、張曉光、王亞平.6月13日與天宮一號(hào)進(jìn)行對(duì)接.6月26日回歸地球.要讀懂這段報(bào)導(dǎo),你認(rèn)為要知道哪些名稱和術(shù)語的含義?二、合作探究探究點(diǎn)一:定義 下列語句屬于定義的是()A.明天是晴天B.長方形的四個(gè)角都是直角C.等角的補(bǔ)角相等D.平行四邊形是兩組對(duì)邊分別平行的四邊形解析:作出正確選擇的關(guān)鍵是理解定義的含義.A是對(duì)天氣的預(yù)測,B是描述長方形的性質(zhì),C是描述補(bǔ)角的性質(zhì).只有D符合定義的概念.故選D.方法總結(jié):定義指的是對(duì)術(shù)語和名稱的含義的描述,是對(duì)一個(gè)事物區(qū)分于其他事物的本質(zhì)特征的描述,而不是對(duì)其性質(zhì)的判斷.

一、情境導(dǎo)入上一節(jié)課我們做過:由兩個(gè)邊長為1的小正方形,通過剪一剪,拼一拼,得到一個(gè)邊長為a的大正方形,那么有a2=2,a=________,2是有理數(shù),而a是無理數(shù).在前面我們學(xué)過若x2=a,則a叫做x的平方,反過來x叫做a的什么呢?二、合作探究探究點(diǎn)一:算術(shù)平方根的概念【類型一】 求一個(gè)數(shù)的算術(shù)平方根求下列各數(shù)的算術(shù)平方根:(1)64;(2)214;(3)0.36;(4)412-402.解析:根據(jù)算術(shù)平方根的定義求非負(fù)數(shù)的算術(shù)平方根,只要找到一個(gè)非負(fù)數(shù)的平方等于這個(gè)非負(fù)數(shù)即可.解:(1)∵82=64,∴64的算術(shù)平方根是8;(2)∵(32)2=94=214,∴214的算術(shù)平方根是32;(3)∵0.62=0.36,∴0.36的算術(shù)平方根是0.6;(4)∵412-402=81,又92=81,∴81=9,而32=9,∴412-402的算術(shù)平方根是3.方法總結(jié):(1)求一個(gè)數(shù)的算術(shù)平方根時(shí),首先要弄清是求哪個(gè)數(shù)的算術(shù)平方根,分清求81與81的算術(shù)平方根的不同意義,不要被表面現(xiàn)象迷惑.(2)求一個(gè)非負(fù)數(shù)的算術(shù)平方根常借助平方運(yùn)算,因此熟記常用平方數(shù)對(duì)求一個(gè)數(shù)的算術(shù)平方根十分有用.

2.法解二元一次方程組,是提升學(xué)生求解二元一次方程的基本技能課,在例題的設(shè)置上充分體現(xiàn)化歸思想.2.在學(xué)習(xí)二元一次方程組的解法中,關(guān)鍵是領(lǐng)會(huì)其本質(zhì)思想——消元,體會(huì)“化未知為已知”的化歸思想.因而在教學(xué)過程中教師通過對(duì)問題的創(chuàng)設(shè),鼓勵(lì)學(xué)生去觀察方程的特點(diǎn),在過手訓(xùn)練中提高學(xué)生的解答正確率和表達(dá)規(guī)范性,提升學(xué)生學(xué)會(huì)數(shù)學(xué)的信心,激發(fā)學(xué)習(xí)數(shù)學(xué)的興趣.3.通過精心設(shè)計(jì)的問題,引導(dǎo)學(xué)生在已有知識(shí)的基礎(chǔ)上,自己比較、分析得出二元一次方程組的解法,在鞏固訓(xùn)練活動(dòng)中,加深學(xué)生對(duì)“化未知為已知”的化歸思想的理解.特別是如何由代入消元法到加減消元法,過渡自然。讓學(xué)生深刻的體會(huì)到二元一次方程是一元一次方程的拓展,二元一次方程組又要通過“消元”,轉(zhuǎn)化為一元一次方程求解,這樣的轉(zhuǎn)化,不僅有助于學(xué)生掌握知識(shí)、技能和方法,提高學(xué)習(xí)效率,而且還加深了對(duì)數(shù)學(xué)中通性和通法的認(rèn)識(shí),體會(huì)學(xué)習(xí)數(shù)學(xué)和研究數(shù)學(xué)的規(guī)律,提升數(shù)學(xué)思維能力.

1.細(xì)講概念、強(qiáng)化訓(xùn)練要想讓學(xué)生正確、牢固地樹立起算術(shù)平方根的概念,需要由淺入深、不斷深化的過程.概念是由具體到抽象、由特殊到一般,經(jīng)過分析、綜合去掉非本質(zhì)特征,保持本質(zhì)屬性而形成的.概念的形成過程也是思維過程,加強(qiáng)概念形成過程的教學(xué),對(duì)提高學(xué)生的思維水平是很有必要的.概念教學(xué)過程中要做到:講清概念,加強(qiáng)訓(xùn)練,逐步深化.“講清概念”就是通過具體實(shí)例揭露算術(shù)平方根的本質(zhì)特征.算術(shù)平方根的本質(zhì)特征就是定義中指出的:“如果一個(gè)正數(shù) 的平方等于 ,即 ,那么這個(gè)正數(shù) 就叫做 的算術(shù)平方根,”的“正數(shù) ”,即被開方數(shù)是正的,由平方的意義, 也是正數(shù),因此算術(shù)平方根也必須是正的.當(dāng)然零的算術(shù)平方根是零.

解析:想要看起來更美,則鞋底到肚臍的長度與身高之比應(yīng)為黃金比,此題應(yīng)根據(jù)已知條件求出肚臍到腳底的距離,再求高跟鞋的高度.解:設(shè)肚臍到腳底的距離為x m,根據(jù)題意,得x1.60=0.60,解得x=0.96.設(shè)穿上y m高的高跟鞋看起來會(huì)更美,則y+0.961.60+y=0.618.解得y≈0.075,而0.075m=7.5cm.故她應(yīng)該穿約為7.5cm高的高跟鞋看起來會(huì)更美.易錯(cuò)提醒:要準(zhǔn)確理解黃金分割的概念,較長線段的長是全段長的0.618.注意此題中全段長是身高與高跟鞋鞋高之和.三、板書設(shè)計(jì)黃金分割定義:一般地,點(diǎn)C把線段AB分成兩條線段AC 和BC,如果ACAB=BCAC,那么稱線段AB被點(diǎn) C黃金分割黃金分割點(diǎn):一條線段有兩個(gè)黃金分割點(diǎn)黃金比:較長線段:原線段=5-12:1 經(jīng)歷黃金分割的引入以及黃金分割點(diǎn)的探究過程,通過問題情境的創(chuàng)設(shè)和解決過程,體會(huì)黃金分割的文化價(jià)值,在應(yīng)用中進(jìn)一步理解相關(guān)內(nèi)容,在實(shí)際操作、思考、交流等過程中增強(qiáng)學(xué)生的實(shí)踐意識(shí)和自信心.感受數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增進(jìn)數(shù)學(xué)學(xué)習(xí)的興趣.

若a,b,c都是不等于零的數(shù),且a+bc=b+ca=c+ab=k,求k的值.解:當(dāng)a+b+c≠0時(shí),由a+bc=b+ca=c+ab=k,得a+b+b+c+c+aa+b+c=k,則k=2(a+b+c)a+b+c=2;當(dāng)a+b+c=0時(shí),則有a+b=-c.此時(shí)k=a+bc=-cc=-1.綜上所述,k的值是2或-1.易錯(cuò)提醒:運(yùn)用等比性質(zhì)的條件是分母之和不等于0,往往忽視這一隱含條件而出錯(cuò).本題題目中并沒有交代a+b+c≠0,所以應(yīng)分兩種情況討論,容易出現(xiàn)的錯(cuò)誤是忽略討論a+b+c=0這種情況.三、板書設(shè)計(jì)比例的性質(zhì)基本性質(zhì):如果ab=cd,那么ad=bc如果ad=bc(a,b,c,d都不等于0),那么ab=cd等比性質(zhì):如果ab=cd=…=mn(b+d+…+n≠0), 那么a+c+…+mb+d+…+n=ab經(jīng)歷比例的性質(zhì)的探索過程,體會(huì)類比的思想,提高學(xué)生探究、歸納的能力.通過問題情境的創(chuàng)設(shè)和解決過程進(jìn)一步體會(huì)數(shù)學(xué)與生活的緊密聯(lián)系,體會(huì)數(shù)學(xué)的思維方式,增強(qiáng)學(xué)習(xí)數(shù)學(xué)的興趣.

解:∵四邊形ABCD是矩形,∴AD∥BC,∠A=90°,∴∠2=∠3.又由折疊知△BC′D≌△BCD,∴∠1=∠2.∴∠1=∠3.∴BE=DE.設(shè)BE=DE=x,則AE=8-x.∵在Rt△ABE中,AB2+AE2=BE2,∴42+(8-x)2=x2.解得x=5,即DE=5.∴S△BED=12DE·AB=12×5×4=10.方法總結(jié):矩形的折疊問題是常見的問題,本題的易錯(cuò)點(diǎn)是對(duì)△BED是等腰三角形認(rèn)識(shí)不足,解題的關(guān)鍵是對(duì)折疊后的幾何形狀要有一個(gè)正確的分析.三、板書設(shè)計(jì)矩形矩形的定義:有一個(gè)角是直角的平行四邊形 叫做矩形矩形的性質(zhì)四個(gè)角都是直角兩組對(duì)邊分別平行且相等對(duì)角線互相平分且相等經(jīng)歷矩形的概念和性質(zhì)的探索過程,把握平行四邊形的演變過程,遷移到矩形的概念與性質(zhì)上來,明確矩形是特殊的平行四邊形.培養(yǎng)學(xué)生的推理能力以及自主合作精神,掌握幾何思維方法,體會(huì)邏輯推理的思維價(jià)值.
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。