
1.直線2x+y+8=0和直線x+y-1=0的交點坐標是( )A.(-9,-10) B.(-9,10) C.(9,10) D.(9,-10)解析:解方程組{■(2x+y+8=0"," @x+y"-" 1=0"," )┤得{■(x="-" 9"," @y=10"," )┤即交點坐標是(-9,10).答案:B 2.直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,則k的值為( )A.-24 B.24 C.6 D.± 6解析:∵直線2x+3y-k=0和直線x-ky+12=0的交點在x軸上,可設交點坐標為(a,0),∴{■(2a"-" k=0"," @a+12=0"," )┤解得{■(a="-" 12"," @k="-" 24"," )┤故選A.答案:A 3.已知直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,若l1⊥l2,則點P的坐標為 . 解析:∵直線l1:ax+y-6=0與l2:x+(a-2)y+a-1=0相交于點P,且l1⊥l2,∴a×1+1×(a-2)=0,解得a=1,聯(lián)立方程{■(x+y"-" 6=0"," @x"-" y=0"," )┤易得x=3,y=3,∴點P的坐標為(3,3).答案:(3,3) 4.求證:不論m為何值,直線(m-1)x+(2m-1)y=m-5都通過一定點. 證明:將原方程按m的降冪排列,整理得(x+2y-1)m-(x+y-5)=0,此式對于m的任意實數(shù)值都成立,根據(jù)恒等式的要求,m的一次項系數(shù)與常數(shù)項均等于零,故有{■(x+2y"-" 1=0"," @x+y"-" 5=0"," )┤解得{■(x=9"," @y="-" 4"." )┤

(1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標準方程,從而得到圓的標準方程.(2)待定系數(shù)法由三個獨立條件得到三個方程,解方程組以得到圓的標準方程中三個參數(shù),從而確定圓的標準方程.它是求圓的方程最常用的方法,一般步驟是:①設——設所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設方程,得所求圓的方程.跟蹤訓練1.已知△ABC的三個頂點坐標分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設所求圓的標準方程為(x-a)2+(y-b)2=r2.因為A(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標都滿足圓的標準方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標準方程是(x+3)2+(y-1)2=25.

情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

XXX軟件有限公司 / 教研組 201x.09 - 202x.06實習老師1. 負責指導學生「日期/時間」練習,協(xié)助班主任完成xx班級的后勤管理。2. 擔任八年級班主任,任職期間秉承著“一切為了學生”的教育態(tài)度,xx開展班級以及家?;顒樱热缂议L課堂、xx班“關心同學”家長會以及班級籃球賽等xx活動;通過與班主任及其他英語老師溝通確定班級英語教學方向,制定班級英語學科暑期教學計劃,通過與班主任及其他美術老師溝通確定班級教學方向

XXX軟件有限公司 I 幼兒班教師負責與班級外教、助教協(xié)調(diào)好班級各項工作,定期召開班務會,做好總結(jié),同時傳達好工作安排,負責開展組織家長會,家長開放日,親子活動,組織大大小小的活動幾十場,策劃活動方案、擔任活動的主持人工作XXX軟件有限公司 I 幼兒班教師通過游戲和手工等寓教于樂的方式來強化兒童宗教故事;教唱并組織練習古典與現(xiàn)代的基督教音樂,實習參與策劃“六一武林萌主”品牌活動。

(一)說教材 《虞美人》選自高中語文統(tǒng)編版必修上冊·古詩詞誦讀。《虞美人》是詞中的代表作品,是李煜生命中最為重要的一首詞作,極具藝術魅力,對于陶冶學生的情操,豐富和積淀學生的人文素養(yǎng)意義非凡。(二)說學情總體來說,所教班級的學生基礎不強,學習意識略有偏差,在學習過程中需要教師深入淺出,不斷創(chuàng)造動口、動手、動腦的機會,他們才能更好地達成教學目標。(三)說教學目標根據(jù)教學內(nèi)容和學情分析,確定如下教學目標(1)探究這首詞的內(nèi)涵,了解李煜及其創(chuàng)作風格。(2)通過對本詞的品析,提高詞的鑒賞能力。(3)通過對比閱讀,體會李煜詞 “赤子之心” 、“以血書者”的特色,體味其深沉的亡國之恨和故國之思。

(2)這樣的例子很多,如,有的同學利用自己掌握的計算機知識制造黑客程序,破壞校園網(wǎng)的正常運行;有的生產(chǎn)者和經(jīng)營者制假售假,坑蒙拐騙;有的人身上存在著拜金主義傾向;等等。從上面的課堂探究中,我們認識到:(1)出現(xiàn)道德沖突的原因:生活變化很快,不斷加快的城鎮(zhèn)化進程;新型產(chǎn)業(yè)的崛起與傳統(tǒng)產(chǎn)業(yè)的衰落,使眾多勞動者不得不面對新的擇業(yè)問題;網(wǎng)絡的普及,使越來越多的人進入社會交行的新天地;等等。在急劇變化的社會生活中,人們在告別傳統(tǒng)?;罘绞降耐瑫r,也常常遭遇思想道德下的“兩難選擇”。(2)解決道德沖突的重要途徑解決道德沖突的一個重要的途徑,就是在社會主義精神文明建設的實踐中,加強自身知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標?!笳n堂練習:道德沖突()①是經(jīng)濟生活日益發(fā)展的反映②不存在于現(xiàn)實生活中③是一個永遠無法解決的問題④是社會生活急劇變化的產(chǎn)物

一、教材分析《思想道德修養(yǎng)和科學文化修 養(yǎng)》是人教版高中政治必修一《文化生活》第十課第二框題的教學內(nèi)容。主要學評析文化修養(yǎng)與思想道德修養(yǎng)的關系,說明青少年應該不斷地追求更高的思想道德目標。二、教學目標1、知識目標識記:思想道德修養(yǎng)和科學文化修養(yǎng)的含義。理解:思想道德修養(yǎng)和科學文化修養(yǎng)的內(nèi)在聯(lián)系。分析:當代中國青年如何追求更高的思想道德目標。2、能力目標通過對“兩個修養(yǎng)”的學習,提高學生比較分析問題的能力。3、情感、態(tài)度、價值觀目標:通過本課的學習,增強當代中學生自覺提高自身全面素質(zhì)的能力,不斷地追求更高的思想道德目標。三、教學重難點教學重點:理解思想道德修養(yǎng)和科學文化修養(yǎng)的內(nèi)在聯(lián)系。教學難點:歸納如何追求更高的思想道德目標。四、學情分析通過上一框題的學習,學生從宏觀上把握了國家加強思想道德建設的相關內(nèi)容,,本課將從微觀上即從個人的角度重點學習不斷提高思想道德修養(yǎng)和科學文化修養(yǎng)的原因及具體要求。本課內(nèi)容離學生的距離較近,是學 生比較感興趣的。

有的學者還指出,要堅持集體主義還必須將集體主義的價值精神與社會主義市場經(jīng)濟的要求結(jié)合起來,批判地繼承計劃經(jīng)濟時代倡導的集體主義,合理地對其進行體系結(jié)構(gòu)的調(diào)整和內(nèi)容的更新,形成新的集體主義。與傳統(tǒng)的集體主義相比,這種新的集體主義應具有如下兩個主要特點。其一,強調(diào)集體的出發(fā)點是為了維護集體成員的正當個人利益。傳統(tǒng)的集體主義具有片面強調(diào)集體至上性、絕對性的弊端;新的集體主義必須依據(jù)社會主義市場經(jīng)濟的現(xiàn)實要求,將集體應當對個人承擔的義務加以科學的闡釋。真正的集體應該維護各個集體成員的個人利益,實現(xiàn)組成集體的各個主體的自我價值。這種新型的集體主義是對社會主義市場經(jīng)濟條件下社會關系的真實反映,既與個人主義有本質(zhì)區(qū)別,也不同于傳統(tǒng)的集體主義。其二,要體現(xiàn)道德要求的先進性與廣泛性的統(tǒng)一。

(2)由來:《黃帝內(nèi)經(jīng)》是我國古典醫(yī)籍中現(xiàn)存最早的一部醫(yī)學,在整個中醫(yī)的發(fā)展過程起著重要的作用。該書中闡述的理論,一直以來指導著整個中醫(yī)學術的發(fā)展,是學習中醫(yī)不可缺少的一部經(jīng)典讀物,也是現(xiàn)代中醫(yī)院學生學習中醫(yī)時必讀的醫(yī)書。顧名思義,“內(nèi)經(jīng)”是講內(nèi)科方面的疾病,據(jù)《隋書.藝文志》記載,除了有《黃帝內(nèi)經(jīng)》外,還有一本《黃帝外經(jīng)》。這兩本書是姊妹篇??磥?,《黃帝內(nèi)經(jīng)》是針對《黃帝外經(jīng)》說的。2、《傷寒雜病論》:集大成的中醫(yī)專著、“萬世寶典”(1)作者:東漢張仲景(2)內(nèi)容:全書分為“傷寒”和“雜病”兩大部分,(3)地位:創(chuàng)造性地提出辯證施治的方法,奠定了后世中醫(yī)臨床學的理論基礎,被后世醫(yī)家譽為“萬世寶典”。3、《本草綱目》:“東方藥物巨典”(1)作者:明朝李時珍(2)內(nèi)容:記錄各類藥物1892種、藥方一萬多個,還繪制了一千多幅藥物形態(tài)圖。(3)地位:這部重要的中藥學著作,是對16世紀以前中藥學的系統(tǒng)總結(jié),被稱為“東方藥物寶典”。

【教學重點】怎樣弘揚和培育中華民族精神?!窘虒W策略】(1)通過引導學生學習和探討,使學生在解決實際問題的過程中了解弘揚和培育民族精神,最重要的是發(fā)揮“主心骨”的作用;必須繼承和發(fā)揚中華民族的優(yōu)良傳統(tǒng);必須正確對待外來思想文化的影響;必須與弘揚時代精神相結(jié)合。以愛國主義為核心的民族精神和以改革創(chuàng)新為核心的時代精神,相輔相成,相互支撐,統(tǒng)一于建設中國特色社會主義的偉大實踐。(2)通過踐行體驗,結(jié)合美國傳媒對世界的巨大影響以及不同國家強化民族精神教育的事例,引導學生體會和感悟民族精神對于一個國家、一個民族的生存和發(fā)展的重要性,理解我國當前弘揚和培育民族精神的重要意義;回顧歷史經(jīng)驗教訓,體會和思考我們應該弘揚和培育什么樣的民族精神;面對世界范圍各種思想文化相互激蕩,體會和思考我們應如何弘揚和培育民族精神?!咎骄恐笇А靠煞秩齻€步驟進行。

當你看到他們獲得冠軍登上金牌領獎臺時,見到中華人民共和國國旗冉冉時升起時,聽到中華人民共和國國歌奏響時,作為一名中國人,即使你對這兩項運動都不感興趣,你有什么樣的感受?感覺到作為中國人的無比光榮與自豪 你呢 ? 你呢 ?你們都是一樣,我和絕大多數(shù)中國人都有這種共同的感受。這是在和平年代,而在民族危亡時期,人們也有共同的行動 例如1900年八國聯(lián)軍進攻北京的途中遇到了民間組織的頑強抵抗,中國人民手持刀槍棍棒,同槍炮武裝的侵略軍展開斗爭,血肉橫飛,依然面無懼色,戰(zhàn)到最后一人,也要奮勇拼殺。由以上兩種情況,我們大家思考是什么使得他們有著共同的感受,有著共同的行動?提示:(若換作是大和民族的人他在剛才的情境中則不會有呢?)顯而易見,我們是中華民族,有著共同的東西,共同的思想情感,共同的行為準則,而這些共同的東西就是我們所說的中華民族精神。

2.能力目標(1)通過本課的學習,要求著重培養(yǎng)學生全面地、聯(lián)系地看問題和分析問題的能力;培養(yǎng)學生綜合運用知識的能力,以及運用所學知識分析、處理和解決實際問題的能力。(2)使學生初步具有從錯綜復雜的聯(lián)系中認識和發(fā)現(xiàn)事物本質(zhì)的、固有的、內(nèi)在的聯(lián)系的能力,初步學會用全面的、聯(lián)系的觀點看問題的能力。(3)使學生初步具有堅持和把握整體與部分辯證關系的能力,初步具有運用系統(tǒng)優(yōu)化的方法安排自己學習和生活的能力。在處理問題時,既要看到整體與部分之間的聯(lián)系又要看到它們的區(qū)別,掌握系統(tǒng)優(yōu)化的方法,學會運用綜合性的思維方式認識事物和處理生活、學習和工作中的問題。3.情感、態(tài)度和價值觀目標(1)樹立唯物辯證法的聯(lián)系觀,自覺抵制形而上學的靜止觀。堅持用聯(lián)系的觀點看問題,自覺維護人類生存的環(huán)境,確信一切以時間、地點和條件為轉(zhuǎn)移,是我們正確認識和把握事物、在認識世界和改造世界的活動中不斷取得成功的關鍵。

3、運用目標(1)運用所學知識說明世界真正的統(tǒng)一性就在于它的物質(zhì)性(2)運用所學知識及相關哲學原理,分析作為物質(zhì)觀發(fā)展的第一個基本階段,古代樸素唯物主義物質(zhì)觀的局限性,從分析論證中加深對辯證唯物主義物質(zhì)觀的科學性的理解(3)列舉實際事例,結(jié)合相關哲學原理,討論如果只承認運動的絕對性,而否認靜止的相對性會導致的結(jié)果,分析馬克思主義哲學為什么要堅持絕對運動與相對靜止的統(tǒng)一(4)世界是有規(guī)律的,規(guī)律是普遍的。列舉實際事例,分析任何事物都有其內(nèi)在的規(guī)律性,規(guī)律是客觀的,是不以人的意志為轉(zhuǎn)移的,但是人在規(guī)律目前并不是無能為力的二、能力目標1、培養(yǎng)學生自覺運用馬克思主義的物質(zhì)觀分析宇宙間一切事物及現(xiàn)象的能力2、鍛煉學生理論聯(lián)系實際的能力,培養(yǎng)學生正確認識世界的本質(zhì),并能夠自覺地按照客觀規(guī)律辦事的能力
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。