
【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點 :用因式分解法解某些方程。 【溫故】1、(1)將一個多項式(特別是二次三項式)因式分解,有哪幾種分解方法?(2)將下列多項式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

五.研習(xí)第一段:1.誦讀指導(dǎo)要處理好句中停頓2.請學(xué)生對照注釋翻譯本段重點詞句:學(xué)不可以已已:停止。青,取之于藍而青于藍于:從;比。木直中繩中:zhàng符合,合于。雖有槁暴,不復(fù)挺者,揉使之然也有通又,揉通煣,以火烘木,使其彎曲。然:這樣。翻譯:故木受繩則直,金就礪則利,君子博學(xué)而日參省乎己,則知明而行無過矣。所以木材經(jīng)墨線畫過(再用斧鋸加工)就直了,金屬刀劍拿到磨刀石上(磨過)就鋒利了,君子廣博地學(xué)習(xí)并且每天對自己檢驗反省,就能智慧明達,行為沒有過錯了。3.本段是從哪個角度論述中心論點的?明確:本段是從學(xué)習(xí)的意義這個角度論述中心論點的。荀子認為人的知識、道德、才能都不是天生成的,而是后天不斷學(xué)習(xí)獲得的,學(xué)習(xí)的意義十分重大,所以學(xué)習(xí)不能停止。4.本段中幾個比喻句是為了說明什么道理?學(xué)生討論發(fā)言,教師明確:

B重點與難點重點:伽利略對物理學(xué)發(fā)展的重大貢獻;經(jīng)典力學(xué)的建立;相對論的提出;量子論的誕生。難點:物理學(xué)各階段發(fā)展的原因;對科學(xué)發(fā)展創(chuàng)新性的理解。D教學(xué)過程【導(dǎo)入新課】1632年,伽利略撰寫的《關(guān)于托勒密和哥白尼兩大世界體系的對話》科學(xué)巨著出版后,立刻引起教會的恐慌,把伽利略投入監(jiān)獄。教皇烏爾班八世的御用工具——宗教裁判所在1633年6月21日宣布對伽利略的判決:“我們判決你在宗教法庭監(jiān)獄內(nèi)服刑,刑期由我們掌握,為了有益于補贖,命令你在今后3年內(nèi),每周背誦7篇贖罪詩篇……”這一紙胡言,竟使伽利略蒙冤300多年,致死都沒有撤銷判決,甚至死后還被禁止舉行殯禮,不準(zhǔn)葬入圣太克羅斯墓地。那么,是什么原因?qū)е伦诮滩门兴鶎だ宰髁巳绱伺袥Q?我們應(yīng)如何看待伽利略在科學(xué)領(lǐng)域的貢獻?

一、知識與能力:(1)了解中國古代不同時期的文學(xué)特色;(2)了解、詩,詞、歌、賦等各種不同的知識內(nèi)容和形式,知道和掌握一定數(shù)量的名家作品;(3)拓寬文化視野,提高賞析和運用古代文學(xué)作品的能力。二、過程與方法:(1)通過教科書及教師提供的材料以及自己的日常積累,通過閱讀,討論,分析,評論了解各個不同時期的文學(xué)發(fā)展特色。(2)通過閱讀,觀察,練習(xí),欣賞,表演,評論,創(chuàng)作等方式積極參與教學(xué);通過獨立思考或合作學(xué)習(xí)對所學(xué)的內(nèi)容進行比較,概括和闡釋;學(xué)會合作學(xué)習(xí)和相互交流。三、情感態(tài)度與價值觀:通過本課學(xué)習(xí),了解中國古代燦爛的文化。通過對文學(xué)家、詩人及其文學(xué)作品的分析,把學(xué)生帶進文學(xué)藝術(shù)的殿堂,感受古人的呼吸,思想,情操。增強文化修養(yǎng)。

二、程朱理學(xué):1、宋代“理學(xué)”的產(chǎn)生:(1)含義:所謂“理學(xué)”,就是用“理學(xué)”一詞來指明當(dāng)時兩宋時期所呈現(xiàn)出來的儒學(xué)。廣義的理學(xué),泛指以討論天道問題為中心的整個哲學(xué)思潮,包括各種不同的學(xué)派;狹義的理學(xué),專指程顥、程頤、朱熹為代表的,以“理”為最高范疇的學(xué)說,稱為“程朱理學(xué)”。理學(xué)是北宋政治、社會、經(jīng)濟發(fā)展的理論表現(xiàn),是中國古代哲學(xué)長期發(fā)展的結(jié)果,是批判佛、道學(xué)說的產(chǎn)物。他們把“理”或“天理”視作哲學(xué)的最高范疇,認為理無所不在,不生不滅,不僅是世界的本原,也是社會生活的最高準(zhǔn)則。在窮理方法上,程顥“主靜”,強調(diào)“正心誠意”;程頤“主敬”,強調(diào)“格物致知”。在人性論上,二程主張“去人欲,存天理”,并深入闡釋這一觀點使之更加系統(tǒng)化。二程學(xué)說的出現(xiàn),標(biāo)志著宋代“理學(xué)”思想體系的正式形成?!竞献魈骄俊克未袄韺W(xué)”興起的社會條件:

在解決問題的過程中,學(xué)生使用到了生活中常見的工具——標(biāo)桿、鏡子等,這些小工具搖身一變就成了學(xué)生學(xué)習(xí)用的學(xué)具。使學(xué)生感覺到利用身邊的工具完全可以達到解決問題的目的。八、本節(jié)得失本節(jié)課意在更好地讓學(xué)生在實際操作中掌握相似三角形的判定與性質(zhì)。這節(jié)課我感覺成功之處在于:1、立足于問題情境的創(chuàng)設(shè)。在課堂教學(xué)中創(chuàng)設(shè)良好的學(xué)習(xí)情境,充分激發(fā)學(xué)生求學(xué)熱情。當(dāng)學(xué)生的學(xué)習(xí)投入到教師創(chuàng)設(shè)的學(xué)習(xí)情境中,就會形成主動尋求知識的內(nèi)在動力。學(xué)生在這種學(xué)習(xí)情境中主動學(xué)習(xí)到知識,比講授給他們的要豐富得多,而且更能激發(fā)他們的學(xué)習(xí)興趣。2、注意培養(yǎng)學(xué)生的問題意識。問題解決后,教師應(yīng)讓學(xué)生從解決的問題出發(fā),通過對題目的拓展,引導(dǎo)學(xué)生用新的思維去再次解決新問題,這樣不僅讓學(xué)生掌握了更多的知識,還能讓學(xué)生的思維得到升華。3、培養(yǎng)學(xué)生自主探索、合作交流的學(xué)習(xí)方法和習(xí)慣。

(三)解釋、應(yīng)用和發(fā)展問題4:如果測量一座小山的高度,小山腳下還有一條河,怎么辦? (教師巡視課堂,友情幫助 ,讓學(xué)生參照書本99頁,用測角儀測量塔高的方法.這個物體的底部不能到達。)(1)請你設(shè)計一個測量小山高度的方法:要求寫出測量步驟和必須的測量數(shù)據(jù)(用字母表示),并畫出測量平面圖形;(2)用你測量的數(shù)據(jù)(用字母表示),寫出計算小山高度的方法。過程: (1) 學(xué)生觀察、思考、建模、自行解決(3) 學(xué)生間討論交流后,教師展示部分學(xué)生的解答過程(重點關(guān)注:1.學(xué)生能否發(fā)現(xiàn)解決問題的途徑;學(xué)生在引導(dǎo)下,能否借助方程或方程組來解決問題;學(xué)生的自學(xué)能力.2.關(guān)注學(xué)生克服困難的勇氣和堅強的意志力。3.繼續(xù)關(guān)注學(xué)生中出現(xiàn)的典型錯誤。)(設(shè)計意圖: 讓學(xué)生進一步熟悉如何將實際問題轉(zhuǎn)化成數(shù)學(xué)模型,并能用解直角三角形的知識解決簡單的實際問題,發(fā)展學(xué)生的應(yīng)用意識和應(yīng)用能力。

一、教材分析:本節(jié)課選自北京師范大學(xué)教育出版社七年級上冊第五章第三節(jié),是學(xué)生學(xué)習(xí)一元一次方程的含義,并掌握了解法后,通過分析圖形問題中的數(shù)量關(guān)系,建立一元一次方程并用之解決實際問題,是學(xué)生運用數(shù)學(xué)知識解決生活中實際問題中的典型素材,可提高學(xué)生解決問題的能力,提高學(xué)習(xí)數(shù)學(xué)的興趣,形成學(xué)以致用的思想,認識方程運用模型的重要環(huán)節(jié)。二、學(xué)情分析:通過前幾節(jié)解方程的學(xué)習(xí),學(xué)生已經(jīng)掌握了解、列方程的基本方法,在此過程中也初步掌握了運用方程解決實際問題的一般過程,基本會通過分析簡單問題中已知量與未知量的關(guān)系列出方程解應(yīng)用題,但學(xué)生在列方程解應(yīng)用題時常常會遇到從題設(shè)條件中找不到所依據(jù)的等量關(guān)系,或雖能找到等量關(guān)系,但不能列出方程這樣的問題,因此,在教師的引導(dǎo)下,通過學(xué)生親自動手制作模型,自主探索在模型變化過程中的等量關(guān)系,建立方程,從而將圖形問題代數(shù)化。

煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設(shè)生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關(guān)系式;(2)寫出y與x的函數(shù)關(guān)系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當(dāng)生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關(guān)系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關(guān)系式時,要找準(zhǔn)題中所給的等量關(guān)系,然后求解.

【點津】 1.不定式的復(fù)合結(jié)構(gòu)作目的狀語 ,當(dāng)不定式或不定式短語有自己的執(zhí)行者時,要用不定式的復(fù)合結(jié)構(gòu)?即在不定式或不定式短語之前加 for +名詞或賓格代詞?作狀語。He opened the door for the children to come in. 他開門讓孩子們進來。目的狀語從句與不定式的轉(zhuǎn)換 英語中的目的狀語從句,還可以變?yōu)椴欢ㄊ交虿欢ㄊ蕉陶Z作狀語,從而使句子在結(jié)構(gòu)上得以簡化??煞譃閮煞N情況: 1?當(dāng)目的狀語從句中的主語與主句中的主語相同時,可以直接簡化為不定式或不定式短語作狀語。We'll start early in order that/so that we may arrive in time. →We'll start early in order to/so as to arrive in time. 2?當(dāng)目的狀語從句中的主語與主句中的主語不相同時,要用動詞不定式的復(fù)合結(jié)構(gòu)作狀語。I came early in order that you might read my report before the meeting. →I came early in order for you to read my report before the meeting.

教師:不同的時代造就了不同風(fēng)格和不同精神內(nèi)容的詩詞,請同學(xué)們回顧必修一和必修二兩宋中央集權(quán)的加強和經(jīng)濟的發(fā)展?fàn)顩r。學(xué)生:回憶回答。教師:請同學(xué)們結(jié)合時代背景和詞的特點理解詞為什么能夠成為宋代文學(xué)的主流形式和標(biāo)志?學(xué)生:兩宋時經(jīng)濟重心轉(zhuǎn)移到了南方,商業(yè)發(fā)展打破了時間和空間的限制,城市繁榮,市民數(shù)量不斷增加。詞的句子長短不齊,便于抒發(fā)感情,并且能夠歌唱,更能適應(yīng)市井生活的需要。于是,詞成為宋代文學(xué)的主流形式和標(biāo)志。教師:宋代文人地位提高,宋詞就是一個個時代的畫卷:大宋的悲歡離合都寫在了里面。除了詞之外,宋代民間還興起了一種新的詩歌形式,即散曲。學(xué)生:回答散曲的發(fā)展階段及特點、元曲的含義、特點。教師:在中國古代詩歌輝煌發(fā)展的同時,也產(chǎn)生了供人們閑來無事消遣的小說。

(1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學(xué)生的識圖能力,可根據(jù)學(xué)生情況和上課情況適當(dāng)調(diào)整。說明:練習(xí)注意了問題的梯度,由淺入深,一步步引導(dǎo)學(xué)生從不同的圖象中獲取信息,對同學(xué)的回答,教師給予點評,對回答問題暫時有困難的同學(xué),教師應(yīng)幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學(xué)習(xí)了一次函數(shù)圖象的應(yīng)用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當(dāng)然也可以設(shè)法得出各自對應(yīng)的函數(shù)關(guān)系式,然后借助關(guān)系式完全通過計算解決問題。通過列出關(guān)系式解決問題時,一般首先判斷關(guān)系式的特征,如兩個變量之間是不是一次函數(shù)關(guān)系?當(dāng)確定是一次函數(shù)關(guān)系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.

方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進,逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.

由②得y=23x+23.在同一直角坐標(biāo)系中分別作出一次函數(shù)y=3x-4和y=23x+23的圖象.如右圖,由圖可知,它們的圖象的交點坐標(biāo)為(2,2).所以方程組3x-y=4,2x-3y=-2的解是x=2,y=2.方法總結(jié):用畫圖象的方法可以直觀地獲得問題的結(jié)果,但不是很準(zhǔn)確.三、板書設(shè)計1.二元一次方程組的解是對應(yīng)的兩條直線的交點坐標(biāo);2.用圖象法解二元一次方程組的步驟:(1)變形:把兩個方程化為一次函數(shù)的形式;(2)作圖:在同一坐標(biāo)系中作出兩個函數(shù)的圖象;(3)觀察圖象,找出交點的坐標(biāo);(4)寫出方程組的解.通過引導(dǎo)學(xué)生自主學(xué)習(xí)探索,進一步揭示了二元一次方程和函數(shù)圖象之間的對應(yīng)關(guān)系,很自然的得到二元一次方程組的解與兩條直線的交點之間的對應(yīng)關(guān)系.進一步培養(yǎng)了學(xué)生數(shù)形結(jié)合的意識,充分提高學(xué)生數(shù)形結(jié)合的能力,使學(xué)生在自主探索中學(xué)會不同數(shù)學(xué)知識間可以互相轉(zhuǎn)化的數(shù)學(xué)思想和方法.

2. 在彈性限度內(nèi),彈簧的長度y(厘米)是所掛物體質(zhì)量x(千克)的一次函數(shù).當(dāng)所掛物體的質(zhì)量為1千克時彈簧長15厘米;當(dāng)所掛物體的質(zhì)量為3千克時,彈簧長16厘米.寫出y與x之間的函數(shù)關(guān)系式,并求當(dāng)所掛物體的質(zhì)量為4千克時彈簧的長度.答案: 當(dāng)x=4是,y= 3. 教材例2的再探索:我邊防局接到情報,近海處有一可疑船只A正向公海方向行駛.邊防局迅速派出快艇B追趕,如圖所示, , 分別表示兩船相對于海岸的距離s(海里)與追趕時間t(分)之間的關(guān)系.當(dāng)時間t等于多少分鐘時,我邊防快艇B能夠追趕上A。答案:直線 的解析式: ,直線 的解析式: 15分鐘第五環(huán)節(jié)課堂小結(jié)(2分鐘,教師引導(dǎo)學(xué)生總結(jié))內(nèi)容:一、函數(shù)與方程之間的關(guān)系.二、在解決實際問題時從不同角度思考問題,就會得到不一樣的方法,從而拓展自己的思維.三、掌握利用二元一次方程組求一次函數(shù)表達式的一般步驟:1.用含字母的系數(shù)設(shè)出一次函數(shù)的表達式: ;2.將已知條件代入上述表達式中得k,b的二元一次方程組;3.解這個二元一次方程組得k,b,進而得到一次函數(shù)的表達式.

解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.

學(xué)習(xí)目標(biāo)1.掌握兩個一次函數(shù)圖像的應(yīng)用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學(xué)過程一、情景導(dǎo)入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關(guān)系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學(xué)完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應(yīng)用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;

解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.

四個不同類型的問題由淺入深,學(xué)生能從不同角度掌握求一次函數(shù)的方法.對于問題4,教師可引導(dǎo)學(xué)生分析,并教學(xué)生要學(xué)會畫圖,利用圖象分析問題,體會數(shù)形結(jié)合方法的重要性.學(xué)生若出現(xiàn)解題格式不規(guī)范的情況,教師應(yīng)糾正并給予示范,訓(xùn)練學(xué)生規(guī)范答題的習(xí)慣.第五環(huán)節(jié)課時小結(jié)內(nèi)容:總結(jié)本課知識與方法1.本節(jié)課主要學(xué)習(xí)了怎樣確定一次函數(shù)的表達式,在確定一次函數(shù)的表達式時可以用待定系數(shù)法,即先設(shè)出解析式,再根據(jù)題目條件(根據(jù)圖象、表格或具體問題)求出 , 的值,從而確定函數(shù)解析式。其步驟如下:(1)設(shè)函數(shù)表達式;(2)根據(jù)已知條件列出有關(guān)k,b的方程;(3)解方程,求k,b;4.把k,b代回表達式中,寫出表達式.2.本節(jié)課用到的主要的數(shù)學(xué)思想方法:數(shù)形結(jié)合、方程的思想.目的:引導(dǎo)學(xué)生小結(jié)本課的知識及數(shù)學(xué)方法,使知識系統(tǒng)化.第六環(huán)節(jié)作業(yè)布置習(xí)題4.5:1,2,3,4目的:進一步鞏固當(dāng)天所學(xué)知識。教師也可根據(jù)學(xué)生情況適當(dāng)增減,但難度不應(yīng)過大.

(4)從平均分看,兩隊的平均分相同,實力大體相當(dāng);從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結(jié):本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設(shè)計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標(biāo)準(zhǔn)差:方差的算術(shù)平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學(xué)生的數(shù)學(xué)應(yīng)用能力.通過小組合作,培養(yǎng)學(xué)生的合作意識;通過解決實際問題,讓學(xué)生體會數(shù)學(xué)與生活的密切聯(lián)系.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。