提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

失業(yè)保險應急穩(wěn)崗返還補貼實施方案

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    (1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流。活動二:做一做:填上適當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    北師大初中數(shù)學九年級上冊用配方法求解簡單的一元二次方程2教案

    二、合作交流活動一:(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進行交流?;顒佣鹤鲆蛔觯禾钌线m當?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項和一次項有什么關系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習課時作業(yè):

  • 部編版語文八年級下冊《應有格物致知精神》教案

    部編版語文八年級下冊《應有格物致知精神》教案

    【深入研讀,探究方法】1.思路清晰、縝密。開頭緊扣論題,由“格物致知”的出處,引出對其含義的理解以及我國古代并不重視真正的“格物致知”的原因分析,澄清人們的錯誤認識;接著作者從實驗過程的兩個特點、中國學生存在的問題和作者自己的親身經(jīng)驗三個方面分析真正的“格物致知”精神的重要性;最后指出真正的“格物致知”精神的兩個意義,并發(fā)出號召。全文思路清晰,說理嚴密。2.舉例論證、道理論證和對比論證相結(jié)合,論述充分有力。文章在列舉事例時,采用正面事例和反面事例相結(jié)合的說理方法。如反面事例,文中第4段舉了王陽明“格”竹子的事例,證明了中國傳統(tǒng)的教育并不重視真正的格物致知;在第11段擺了中國學生大都偏向理論輕視實驗的事實;第12段又舉了自己到美國念物理時吃的苦頭。

  • 教學反思數(shù)學仿編應用題活動《小鬼當家》課件教案

    教學反思數(shù)學仿編應用題活動《小鬼當家》課件教案

    目的:1、讓幼兒學會仿編和解答4的加減應用題。2、在生活情景中能根據(jù)水果卡片自編4的加減應用題。準備:1、知識經(jīng)驗準備:請家長帶 幼兒去買東西,使幼兒了解一個買與賣的過程。2、物質(zhì)準備:準備各種水果卡片,人手4個替代物作錢。過程:一、以“幫農(nóng)民伯伯摘果子”引入。“小朋友,果園里的水果都成熟了,農(nóng)民伯伯想請你們幫他摘水果,你們愿意嗎?”(愿意)二、游戲“摘水果”。師交代游戲玩法和規(guī)則。三、分類活動:分水果。1、引導幼兒將自己所摘的水果跟同伴之間進行交流。2、交代任務:將各種水果分別放在筐里。

  • 人教版新課標小學數(shù)學二年級上冊兩位數(shù)加、減兩位數(shù)的應用題教案

    人教版新課標小學數(shù)學二年級上冊兩位數(shù)加、減兩位數(shù)的應用題教案

    1、試驗性操作實驗師:大家說紅花的照片能不能用方格代表?下面請同學們用方格代表紅花的照片,用我們的學具卡片擺出紅花的朵數(shù)。(學生操作,教師巡視。)師:大家說黃花的朵數(shù)能不能也可以這樣操作出?請同學們用上面的方法再操作出黃花的朵數(shù)。(學生操作)師:同學們已經(jīng)擺出了紅花的朵數(shù)和黃花的朵數(shù),怎么操作才能知道紅花和黃花一共是多少朵?(把紅花的朵數(shù)和黃花的朵數(shù)合并起來數(shù)一數(shù))(學生操作,教師巡視。)師:請把合并起來的數(shù)整理一下,讓人一看就能知道是多少朵好嗎?請同學們寫出算式的答案。(即操作表達式)教師多媒體演示全部操作實驗過程,并簡單小結(jié)。2、驗證性操作實驗師:同學們,假如紅花是56朵,黃花是38朵,求“紅花和黃花共幾朵?”你們還能不能用上面的操作實驗方法來解決?(能)好!那就請你們試試看。(學生操作,教師巡視。)

  • 人教版新課標小學數(shù)學二年級下冊連減應用題教案

    人教版新課標小學數(shù)學二年級下冊連減應用題教案

    (4)列式計算:94—34=60(個)60—29=31(個)或34+29=63(個)94-63=31(個)讓學生列出綜合算式,要他們正確的使用小括號。列好后要求學生說出每一步表示的意義。94-34-29或94-(34+29)b.教科書第7頁練習一的第3題。讓學生自己分析題目的已知條件和問題,然后用兩種方法列式解答。58-6-7或58-(6+7)[第2題和第3題是配合例2設計的。教學時先讓學生說明圖意,然后思考要解決的問題。著重練習如何正確使用小括號,同時對學生進行環(huán)保意識的教育。]9.作業(yè)安排①.新型電腦公司有87臺電腦,上午賣出19臺,下午賣出26臺,還剩下多少臺?(用兩種方法解答)②.班級里有22張臘光紙,又買來27張。開聯(lián)歡會時用去38張,還剩下多少張?③.少年宮新購進小提琴52把,中提琴比小提琴少20把,兩種琴一共有多少把?④.一輛公共汽車里有36位乘客,到福州路下去8位,又上來12位,這時車上有多少位?

  • 人教版高中地理選修2現(xiàn)代化技術(shù)在國土整治中的應用教案

    人教版高中地理選修2現(xiàn)代化技術(shù)在國土整治中的應用教案

    ◆重要圖釋1、圖2.4“洞庭湖及荊江地區(qū)飛機遙感影像”圖此圖為飛機遙感影像成像后利用地理信息系統(tǒng)在室內(nèi)分析處理而成。飛機遙感時正值陰雨天氣,雖然圖面較暗,但地物仍然具有較高的分辨率。圖中湖、河等水域為黑色。居民點的顏色為淺灰色,農(nóng)田格局依稀可見。2、圖2.5“洞庭湖及荊江地區(qū)衛(wèi)星遙感影像”圖此圖為衛(wèi)星遙感影像成像后利用地理信息系統(tǒng)在室內(nèi)分析處理而成。圖中深色的范圍表示水體,城市呈灰白色。圖中看不出農(nóng)田的格局,說明衛(wèi)星遙感對地物的分辨率沒有飛機遙感高。【學習策略】由于3S技術(shù)涉及計算機技術(shù)、地球科學、信息科學、系統(tǒng)科學等多個領域,技術(shù)含量高、綜合性強,對于高中生來說,比較難理解,所以,本節(jié)課在介紹有關技術(shù)時,可借助教材中的流程圖和影像圖片。教師應采用多媒體輔助教學手段,增強學生對“3S”技術(shù)的直觀認識。

  • 北師大初中數(shù)學八年級上冊單個一次函數(shù)圖象的應用2教案

    北師大初中數(shù)學八年級上冊單個一次函數(shù)圖象的應用2教案

    (1)用簡潔明快的語言概括大意,不能超過200字;(2)圖表中能確定的數(shù)值,在故事敘述中不得少于3個,且要分別涉及時間、路和速度這三個量.意圖:旨在檢測學生的識圖能力,可根據(jù)學生情況和上課情況適當調(diào)整。說明:練習注意了問題的梯度,由淺入深,一步步引導學生從不同的圖象中獲取信息,對同學的回答,教師給予點評,對回答問題暫時有困難的同學,教師應幫助他們樹立信心。第四環(huán)節(jié):課時小結(jié)內(nèi)容:本節(jié)課我們學習了一次函數(shù)圖象的應用,在運用一次函數(shù)解決實際問題時,可以直接從函數(shù)圖象上獲取信息解決問題,當然也可以設法得出各自對應的函數(shù)關系式,然后借助關系式完全通過計算解決問題。通過列出關系式解決問題時,一般首先判斷關系式的特征,如兩個變量之間是不是一次函數(shù)關系?當確定是一次函數(shù)關系時,可求出函數(shù)解析式,并運用一次函數(shù)的圖象和性質(zhì)進一步求得我們所需要的結(jié)果.

  • 北師大初中數(shù)學八年級上冊單個一次函數(shù)圖象的應用1教案

    北師大初中數(shù)學八年級上冊單個一次函數(shù)圖象的應用1教案

    方法總結(jié):要認真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關系,關鍵是正確利用待定系數(shù)法求出一次函數(shù)的關系式.三、板書設計一次函數(shù)的應用單個一次函數(shù)圖象的應用一次函數(shù)與一元一次方程的關系探究的過程由淺入深,并利用了豐富的實際情景,增加了學生的學習興趣.教學中要注意層層遞進,逐步讓學生掌握求一次函數(shù)與一元一次方程的關系.教學中還應注意尊重學生的個體差異,使每個學生都學有所獲.

  • 北師大初中數(shù)學八年級上冊勾股定理的應用2教案

    北師大初中數(shù)學八年級上冊勾股定理的應用2教案

    內(nèi)容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎.第二環(huán)節(jié):合作探究內(nèi)容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線.讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法.

  • 北師大初中數(shù)學八年級上冊兩個一次函數(shù)圖象的應用1教案

    北師大初中數(shù)學八年級上冊兩個一次函數(shù)圖象的應用1教案

    解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標,即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標.三、板書設計兩個一次函數(shù)的應用實際生活中的問題幾何問題進一步訓練學生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學生的分析問題、解決問題的能力和數(shù)學應用意識.

  • 北師大初中數(shù)學八年級上冊兩個一次函數(shù)圖象的應用2教案

    北師大初中數(shù)學八年級上冊兩個一次函數(shù)圖象的應用2教案

    學習目標1.掌握兩個一次函數(shù)圖像的應用;(重點)2.能利用函數(shù)圖象解決實際問題。(難點)教學過程一、情景導入在一次蠟燭燃燒實驗中,甲、乙兩根蠟燭燃燒時剩余部分的高度y(厘米)與燃燒時間x(小時)之間的關系如圖所示.請你根據(jù)圖象所提供的信息回答下列問題:甲、乙兩根蠟燭燃燒前的高度分別是 厘米、 厘米,從點燃到燃盡所用的時間分別是 小時、 小時.你會解答上面的問題嗎?學完本解知識,相信你能很快得出答案。二、 合作探究探究點一:兩個一次函數(shù)的應用(2015?日照模擬)自來水公司有甲、乙兩個蓄水池,現(xiàn)將甲池的中水勻速注入乙池,甲、乙兩個蓄水池中水的深度y(米)與注水時間x(時)之間的函數(shù)圖象如下所示,結(jié)合圖象回答下列問題.(1)分別求出甲、乙兩個蓄水池中水的深度y與注水時間x之間的函數(shù)表達式;(2)求注入多長時間甲、乙兩個蓄水池水的深度相同;(3)求注入多長時間甲、乙兩個蓄水的池蓄水量相同;

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用1教案

    因為反比例函數(shù)的圖象經(jīng)過點A(1.5,400),所以有k=600.所以反比例函數(shù)的關系式為p=600S(S>0);(2)當S=0.2時,p=6000.2=3000,即壓強是3000Pa;(3)由題意知600S≤6000,所以S≥0.1,即木板面積至少要有0.1m2.方法總結(jié):本題滲透了物理學中壓強、壓力與受力面積之間的關系p= ,當壓力F一定時,p與S成反比例.另外,利用反比例函數(shù)的知識解決實際問題時,要善于發(fā)現(xiàn)實際問題中變量之間的關系,從而進一步建立反比例函數(shù)模型.三、板書設計反比例函數(shù)的應用實際問題與反比例函數(shù)反比例函數(shù)與其他學科知識的綜合經(jīng)歷分析實際問題中變量之間的關系,建立反比例函數(shù)模型,進而解決問題的過程,提高運用代數(shù)方法解決問題的能力,體會數(shù)學與現(xiàn)實生活的緊密聯(lián)系,增強應用意識.通過反比例函數(shù)在其他學科中的運用,體驗學科整合思想.

  • 北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    北師大初中數(shù)學九年級上冊反比例函數(shù)的應用2教案

    補充題:為了預防“非典”,某學校對教室采用藥熏消毒,已知藥物燃燒時,室內(nèi)每立方米空氣中的含藥量y(毫克)與時間x(分鐘)成為正比例,藥物燃燒后,y與x成反比例(如右圖),現(xiàn)測得藥物8分鐘燃畢,此時室內(nèi)空氣中每立方米的含藥量6毫克,請根據(jù)題中所提供的信息,解答下列問題:(1)藥物燃燒時,y關于x的函數(shù)關系式為 ,自變量x的取值范圍為 ;藥物燃燒后,y關于x的函數(shù)關系式為 .(2)研究表明,當空氣中每立方米的含藥量低于1.6毫克時學生方可進教室,那么從消毒開始,至少需要經(jīng)過______分鐘后,學生才能回到教室;(3)研究表明,當空氣中每立方米的含藥量不低于3毫克且持續(xù)時間不低于10分鐘時,才能有效殺滅空氣中的病菌,那么此次消毒是否有效?為什么?答案:(1)y= x, 010,即空氣中的含藥量不低于3毫克/m3的持續(xù)時間為12分鐘,大于10分鐘的有效消毒時間.

  • 北師大初中八年級數(shù)學下冊一元一次不等式的應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式的應用教案

    有三種購買方案:購A型0臺,B型10臺;A型1臺,B型9臺;A型2臺,B型8臺;(2)240x+200(10-x)≥2040,解得x≥1,∴x為1或2.當x=1時,購買資金為12×1+10×9=102(萬元);當x=2時,購買資金為12×2+10×8=104(萬元).答:為了節(jié)約資金,應選購A型1臺,B型9臺.方法總結(jié):此題將現(xiàn)實生活中的事件與數(shù)學思想聯(lián)系起來,屬于最優(yōu)化問題,在確定最優(yōu)方案時,應把幾種情況進行比較.三、板書設計應用一元一次不等式解決實際問題的步驟:實際問題――→找出不等關系設未知數(shù)列不等式―→解不等式―→結(jié)合實際問題確定答案本節(jié)課通過實例引入,激發(fā)學生的學習興趣,讓學生積極參與,講練結(jié)合,引導學生找不等關系列不等式.在教學過程中,可通過類比列一元一次方程解決實際問題的方法來學習,讓學生認識到列方程與列不等式的區(qū)別與聯(lián)系.

  • 北師大初中八年級數(shù)學下冊一元一次不等式組的解法及應用教案

    北師大初中八年級數(shù)學下冊一元一次不等式組的解法及應用教案

    安裝及運輸費用為600x+800(12-x),根據(jù)題意得4000x+3000(12-x)≤40000,600x+800(12-x)≤9200.解得2≤x≤4,由于x取整數(shù),所以x=2,3,4.答:有三種方案:①購買甲種設備2臺,乙種設備10臺;②購買甲種設備3臺,乙種設備9臺;③購買甲種設備4臺,乙種設備8臺.方法總結(jié):列不等式組解應用題時,一般只設一個未知數(shù),找出兩個或兩個以上的不等關系,相應地列出兩個或兩個以上的不等式組成不等式組求解.在實際問題中,大部分情況下應求整數(shù)解.三、板書設計1.一元一次不等式組的解法2.一元一次不等式組的實際應用利用一元一次不等式組解應用題關鍵是找出所有可能表達題意的不等關系,再根據(jù)各個不等關系列成相應的不等式,組成不等式組.在教學時要讓學生養(yǎng)成檢驗的習慣,感受運用數(shù)學知識解決問題的過程,提高實際操作能力.

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用2教案

    教學目標(一)教學知識點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的應用.2.能夠把實際問題轉(zhuǎn)化為數(shù)學問題,能夠借助于計算器進行有關三角函數(shù)的計算,并能對結(jié)果的意義進行說明.(二)能力訓練要求發(fā)展學生的數(shù)學應用意識和解決問題的能力.(三)情感與價值觀要求1.在經(jīng)歷弄清實際問題題意的過程中,畫出示意圖,培養(yǎng)獨立思考問題的習慣和克服困難的勇氣. 2.選擇生活中學生感興趣的題材,使學生能積極參與數(shù)學活動,提高學習數(shù)學、學好數(shù)學的欲望.教具重點1.經(jīng)歷探索船是否有觸礁危險的過程,進一步體會三角函數(shù)在解決問題過程中的作用.2.發(fā)展學生數(shù)學應用意識和解決問題的能力.教學難點根據(jù)題意,了解有關術(shù)語,準確地畫出示意圖.教學方法探索——發(fā)現(xiàn)法教具準備多媒體演示

  • 北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    北師大初中九年級數(shù)學下冊三角函數(shù)的應用1教案

    然后,她沿著坡度是i=1∶1(即tan∠CED=1)的斜坡步行15分鐘抵達C處,此時,測得A點的俯角是15°.已知小麗的步行速度是18米/分,圖中點A、B、E、D、C在同一平面內(nèi),且點D、E、B在同一水平直線上.求出娛樂場地所在山坡AE的長度(參考數(shù)據(jù):2≈1.41,結(jié)果精確到0.1米).解析:作輔助線EF⊥AC于點F,根據(jù)速度乘以時間得出CE的長度,通過坡度得到∠ECF=30°,通過平角減去其他角從而得到∠AEF=45°,即可求出AE的長度.解:作EF⊥AC于點F,根據(jù)題意,得CE=18×15=270(米). ∵tan∠CED=1,∴∠CED=∠DCE=45°.∵∠ECF=90°-45°-15°=30°,∴EF=12CE=135米.∵∠CEF=60°,∠AEB=30°,∴∠AEF=180°-45°-60°-30°=45°,∴AE=2EF=1352≈190.4(米).所以,娛樂場地所在山坡AE的長度約為190.4米.方法總結(jié):解決本題的關鍵是能借助仰角、俯角和坡度構(gòu)造直角三角形,并結(jié)合圖形利用三角函數(shù)解直角三角形.

  • 人教部編版語文八年級下冊應有格物致知精神教案

    人教部編版語文八年級下冊應有格物致知精神教案

    1.了解演講者的觀點,領悟格物致知精神的內(nèi)涵。2.梳理演講者的思路,把握演講詞層層推進的結(jié)構(gòu)。 一、導入新課 1974年,美籍華裔物理學家丁肇中向全世界宣布發(fā)現(xiàn)J粒子,開辟了人們認識微觀世界的新境界,并因此于1976年獲得了諾貝爾物理學獎,成為首位用中文在諾獎頒獎典禮上發(fā)表演講的科學家,引起了世界的轟動。請同學們閱讀下面這則材料,了解他取得這項偉大成就的經(jīng)歷。1974年以前,人們認為基本粒子都可以歸納為三種夸克。丁肇中對此持懷疑態(tài)度,但他想進行實驗的想法卻遭到了幾乎所有國家大型實驗室的反對。最終,他在美國布魯克海文國家實驗室開展了實驗,經(jīng)過兩年多夜以繼日地實驗,終于發(fā)現(xiàn)了一種未曾預料過的新的基本粒子——J粒子,而它來自第四夸克。他的發(fā)現(xiàn)推翻了過去認為世界只由三種夸克組成的理論,為人類認識微觀世界開辟了一個新的境界,被稱為“物理學的十一月革命”。丁肇中也因此項發(fā)現(xiàn)在1976年獲得了諾貝爾物理學獎。

  • 保密協(xié)議

    保密協(xié)議

    2.在乙方向甲方返還包含商業(yè)秘密的載體時,若記錄著商業(yè)秘密的載體是由乙方自備的,則視為乙方已同意將這些載體物的所有權(quán)轉(zhuǎn)讓給甲方。甲方可以在乙方返還這些載體時,給予乙方相當于載體本身市場價值的經(jīng)濟補償;或者當商業(yè)秘密可以從該載體上復制及消除時,甲方亦可以將秘密信息復制到甲方享有所有權(quán)的其他載體上,并把原載體上的秘密信息消除后,將該載體交予乙方。

上一頁123...171819202122232425262728下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。