由于三角函數(shù)是刻畫周期變化現(xiàn)象的數(shù)學(xué)模型,這也是三角函數(shù)不同于其他類型函數(shù)的最重要的地方,而且對于周期函數(shù),我們只要認(rèn)識清楚它在一個周期的區(qū)間上的性質(zhì),那么它的性質(zhì)也就完全清楚了,因此本節(jié)課利用單位圓中的三角函數(shù)的定義、三角函數(shù)值之間的內(nèi)在聯(lián)系性等來作圖,從畫出的圖形中觀察得出五個關(guān)鍵點,得到“五點法”畫正弦函數(shù)、余弦函數(shù)的簡圖.課程目標(biāo)1.掌握“五點法”畫正弦曲線和余弦曲線的步驟和方法,能用“五點法”作出簡單的正弦、余弦曲線.2.理解正弦曲線與余弦曲線之間的聯(lián)系. 數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:正弦曲線與余弦曲線的概念; 2.邏輯推理:正弦曲線與余弦曲線的聯(lián)系; 3.直觀想象:正弦函數(shù)余弦函數(shù)的圖像; 4.數(shù)學(xué)運算:五點作圖; 5.數(shù)學(xué)建模:通過正弦、余弦圖象圖像,解決不等式問題及零點問題,這正是數(shù)形結(jié)合思想方法的應(yīng)用.
本節(jié)課是三角函數(shù)的繼續(xù),三角函數(shù)包含正弦函數(shù)、余弦函數(shù)、正切函數(shù).而本課內(nèi)容是正切函數(shù)的性質(zhì)與圖像.首先根據(jù)單位圓中正切函數(shù)的定義探究其圖像,然后通過圖像研究正切函數(shù)的性質(zhì). 課程目標(biāo)1、掌握利用單位圓中正切函數(shù)定義得到圖象的方法;2、能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:借助單位圓理解正切函數(shù)的圖像; 2.邏輯推理: 求正切函數(shù)的單調(diào)區(qū)間;3.數(shù)學(xué)運算:利用性質(zhì)求周期、比較大小及判斷奇偶性.4.直觀想象:正切函數(shù)的圖像; 5.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正切函數(shù)的性質(zhì). 重點:能夠利用正切函數(shù)圖象準(zhǔn)確歸納其性質(zhì)并能簡單地應(yīng)用; 難點:掌握利用單位圓中正切函數(shù)定義得到其圖象.
本節(jié)課在已學(xué)對數(shù)函數(shù)的概念,接著研究對數(shù)函數(shù)的圖像和性質(zhì),從而深化學(xué)生對對數(shù)函數(shù)的理解,并且了解較為全面的研究函數(shù)的方法,為以后在研究函數(shù)增長類型打下基礎(chǔ)。另外,我們?nèi)粘I钪械暮芏喾矫娑忌婕暗搅藢?shù)函數(shù)的知識,例如溶液酸堿度的測量,所以學(xué)習(xí)這一節(jié)具有很大的現(xiàn)實價值。課程目標(biāo)1、掌握對數(shù)函數(shù)的圖象和性質(zhì),培養(yǎng)學(xué)生實際應(yīng)用函數(shù)的能力;2、通過觀察圖象,分析、歸納、總結(jié)對數(shù)函數(shù)的性質(zhì);3、在對數(shù)函數(shù)的學(xué)習(xí)過程中,體驗數(shù)學(xué)的科學(xué)價值并養(yǎng)成勇于探索的良好習(xí)慣.數(shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:對數(shù)函數(shù)的圖像與性質(zhì);2.邏輯推理:圖像平移問題;3.數(shù)學(xué)運算:求函數(shù)的定義域與值域;4.數(shù)據(jù)分析:利用對數(shù)函數(shù)的性質(zhì)比較兩個函數(shù)值的大小及解對數(shù)不等式;5.數(shù)學(xué)建模:通過由抽象到具體,由具體到一般的數(shù)形結(jié)合思想總結(jié)指數(shù)函數(shù)性質(zhì).
本節(jié)課是新版教材人教A版普通高中課程標(biāo)準(zhǔn)實驗教科書數(shù)學(xué)必修1第四章第4.4.2節(jié)《對數(shù)函數(shù)的圖像和性質(zhì)》 是高中數(shù)學(xué)在指數(shù)函數(shù)之后的重要初等函數(shù)之一。對數(shù)函數(shù)與指數(shù)函數(shù)聯(lián)系密切,無論是研究的思想方法方法還是圖像及性質(zhì),都有其共通之處。相較于指數(shù)函數(shù),對數(shù)函數(shù)的圖象亦有其獨特的美感。在類比推理的過程中,感受圖像的變化,認(rèn)識變化的規(guī)律,這是提高學(xué)生直觀想象能力的一個重要的過程。為之后學(xué)習(xí)數(shù)學(xué)提供了更多角度的分析方法。培養(yǎng)和發(fā)展學(xué)生邏輯推理、數(shù)學(xué)直觀、數(shù)學(xué)抽象、和數(shù)學(xué)建模的核心素養(yǎng)。1、掌握對數(shù)函數(shù)的圖像和性質(zhì);能利用對數(shù)函數(shù)的圖像與性質(zhì)來解決簡單問題;2、經(jīng)過探究對數(shù)函數(shù)的圖像和性質(zhì),對數(shù)函數(shù)與指數(shù)函數(shù)圖像之間的聯(lián)系,對數(shù)函數(shù)內(nèi)部的的聯(lián)系。培養(yǎng)學(xué)生觀察問題、分析問題和歸納問題的思維能力以及數(shù)學(xué)交流能力;滲透類比等基本數(shù)學(xué)思想方法。
本節(jié)內(nèi)容是三角恒等變形的基礎(chǔ),是正弦線、余弦線和誘導(dǎo)公式等知識的延伸,同時,它又是兩角和、差、倍、半角等公式的“源頭”。兩角和與差的正弦、余弦、正切是本章的重要內(nèi)容,對于三角變換、三角恒等式的證明和三角函數(shù)式的化簡、求值等三角問題的解決有著重要的支撐作用。 課程目標(biāo)1、能夠推導(dǎo)出兩角和與差的正弦、余弦、正切公式并能應(yīng)用; 2、掌握二倍角公式及變形公式,能靈活運用二倍角公式解決有關(guān)的化簡、求值、證明問題.?dāng)?shù)學(xué)學(xué)科素養(yǎng)1.數(shù)學(xué)抽象:兩角和與差的正弦、余弦和正切公式; 2.邏輯推理: 運用公式解決基本三角函數(shù)式的化簡、證明等問題;3.數(shù)學(xué)運算:運用公式解決基本三角函數(shù)式求值問題.4.數(shù)學(xué)建模:學(xué)生體會到一般與特殊,換元等數(shù)學(xué)思想在三角恒等變換中的作用。.
本節(jié)課是正弦函數(shù)、余弦函數(shù)圖像的繼續(xù),本課是正弦曲線、余弦曲線這兩種曲線的特點得出正弦函數(shù)、余弦函數(shù)的性質(zhì).
課程目標(biāo)
1.了解周期函數(shù)與最小正周期的意義;
2.了解三角函數(shù)的周期性和奇偶性;
3.會利用周期性定義和誘導(dǎo)公式求簡單三角函數(shù)的周期;
4.借助圖象直觀理解正、余弦函數(shù)在[0,2π]上的性質(zhì)(單調(diào)性、最值、圖象與x軸的交點等);
5.能利用性質(zhì)解決一些簡單問題.
數(shù)學(xué)學(xué)科素養(yǎng)
1.數(shù)學(xué)抽象:理解周期函數(shù)、周期、最小正周期等的含義;
2.邏輯推理:求正弦、余弦形函數(shù)的單調(diào)區(qū)間;
3.數(shù)學(xué)運算:利用性質(zhì)求周期、比較大小、最值、值域及判斷奇偶性.
4.數(shù)學(xué)建模:讓學(xué)生借助數(shù)形結(jié)合的思想,通過圖像探究正、余弦函數(shù)的性質(zhì).
重點:通過正弦曲線、余弦曲線這兩種曲線探究正弦函數(shù)、余弦函數(shù)的性質(zhì);
難點:應(yīng)用正、余弦函數(shù)的性質(zhì)來求含有cosx,sinx的函數(shù)的單調(diào)性、最值、值域及對稱性.
教學(xué)方法:以學(xué)生為主體,小組為單位,采用誘思探究式教學(xué),精講多練。
教學(xué)工具:多媒體。
一、 情景導(dǎo)入
研究一個函數(shù)的性質(zhì)從哪幾個方面考慮?我們知道從定義域、值域、單調(diào)性、周期性、奇偶性、稱性等考慮,那么正余弦函數(shù)有哪些性質(zhì)呢?
要求:讓學(xué)生自由發(fā)言,教師不做判斷。而是引導(dǎo)學(xué)生進(jìn)一步觀察.研探.
二、預(yù)習(xí)課本,引入新課
閱讀課本201-205頁,思考并完成以下問題
1. 周期函數(shù)、周期、最小正周期等的含義?
2. 怎樣判斷三角函數(shù)的周期性和奇偶性?
3. 通過正弦曲線和余弦曲線得到正弦函數(shù)、余弦函數(shù)的哪些性質(zhì)?
要求:學(xué)生獨立完成,以小組為單位,組內(nèi)可商量,最終選出代表回答問題。
三、新知探究
1.定義域
正弦函數(shù)、余弦函數(shù)的定義域都是實數(shù)集(或).
2.值域
(1)值域:正弦函數(shù)、余弦函數(shù)的值域都是.
(2)最值
正弦函數(shù)
①當(dāng)且僅當(dāng)時,取得最大值
②當(dāng)且僅當(dāng)時,取得最小值
余弦函數(shù)
①當(dāng)且僅當(dāng)時,取得最大值
②當(dāng)且僅當(dāng)時,取得最小值
3.周期性
定義:對于函數(shù),如果存在一個非零常數(shù),使得當(dāng)取定義域內(nèi)的每一個值時,
都有,那么函數(shù)就叫做周期函數(shù),非零常數(shù)叫做這個函數(shù)的周期.
由此可知,都是這兩個函數(shù)的周期.
對于一個周期函數(shù),如果在它所有的周期中存在一個最小的正數(shù),那么這個最小正數(shù)就叫做的最小正周期.
根據(jù)上述定義,可知:正弦函數(shù)、余弦函數(shù)都是周期函數(shù),都是它的周期,最小正周期是.
4.奇偶性
()為奇函數(shù),其圖象關(guān)于原點對稱
()為偶函數(shù),其圖象關(guān)于軸對稱
5.對稱性
正弦函數(shù)的對稱中心是,
對稱軸是直線;
余弦函數(shù)的對稱中心是,
對稱軸是直線
(正(余)弦型函數(shù)的對稱軸為過最高點或最低點且垂直于軸的直線,對稱中心為圖象與軸(中軸線)的交點).
6.單調(diào)性
正弦函數(shù)在每一個閉區(qū)間上都是增函數(shù),其值從增大到;在每一個閉區(qū)間上都是減函數(shù),其值從減小到.
余弦函數(shù)在每一個閉區(qū)間上都是增函數(shù),其值從增加到;余弦函數(shù)在每一個閉區(qū)間上都是減函數(shù),其值從減小到.
四、典例分析、舉一反三
題型一 正、余弦函數(shù)的周期性
例1 求下列三角函數(shù)的最小正周期:
(1)y=3cos x,x∈R; (2)y=sin 2x,x∈R;
(3)y=2sin(),x∈R; (4)y=|cos x|,x∈R.
【答案】(1) 2π;(2)π;(3) 4π;(4)π.
【解析】:(1)因為3cos(x+2π)=3cos x,所以由周期函數(shù)的定義知,y=3cos x的最小正周期為2π.
(2)因為sin2(x+π)=sin(2x+2π)=sin2x,所以由周期函數(shù)的定義知,y=sin2x的最小正周期為π.
(3)因為,所以由周期函數(shù)的定義知,的最小正周期為4π.
(4)y=|cos x|的圖象如圖(實線部分)所示.由圖象可知,y=|cos x|的最小正周期為π.
解題技巧:(求函數(shù)最小正周期的常用方法)
(1)定義法,即利用周期函數(shù)的定義求解.
(2)公式法,對形如y=Asin(ωx+φ)或y=Acos(ωx+φ)(A,ω,φ是常數(shù),A≠0,ω≠0)的函數(shù),T=.
(3)圖象法,即通過畫出函數(shù)圖象,通過圖象直接觀察即可.
三種方法各有所長,要根據(jù)函數(shù)式的結(jié)構(gòu)特征,選擇適當(dāng)?shù)姆椒ㄇ蠼猓?
跟蹤訓(xùn)練一
1.(1)函數(shù)y=2sin (3x+),x∈R的最小正周期是( )
(A) (B) (C) (D)π
(2)函數(shù)y=|sin2x|(x∈R)的最小正周期為 .
【答案】(1)B;(2) .
【解析】 (2)作出y=|sin 2x|(x∈R)的圖象(如圖所示).
由圖象可知,函數(shù)y=|sin 2x|(x∈R)的最小正周期為.
題型二 化簡、求值
例2判斷下列函數(shù)的奇偶性:
(1)f(x)=sin 2x;(2)f(x)=sin(+);
(3)f(x)=sin |x|;(4)f(x)=+.
【答案】(1)奇函數(shù);(2)偶函數(shù);(3)偶函數(shù);(4)既是奇函數(shù)又是偶函數(shù).
【解析】(1)顯然x∈R,f(-x)=sin(-2x)=-sin 2x=-f(x),所以f(x)=sin 2x是奇函數(shù).
(2)因為x∈R,f(x)=sin(+)=-cos,
所以f(-x)=-cos(-)=-cos=f(x),
所以函數(shù)f(x)=sin(+)是偶函數(shù).
(3)顯然x∈R,f(-x)=sin |-x|=sin |x|=f(x),
所以函數(shù)f(x)=sin |x|是偶函數(shù).
(4)由得cos x=1,所以x=2kπ(k∈Z),關(guān)于原點對稱,此時f(x)=0,故該函數(shù)既是奇函數(shù)又是偶函數(shù).
解題技巧:(判斷函數(shù)奇偶性的方法)
判斷函數(shù)奇偶性的方法
(1)利用定義判斷一個函數(shù)f(x)的奇偶性,要考慮兩方面:①函數(shù)的定義域是否關(guān)于原點對稱;②f(-x)與f(x)的關(guān)系;
(2)判斷函數(shù)的奇偶性常用方法是:①定義法;②圖象法.
跟蹤訓(xùn)練二
1.下列函數(shù)中,最小正周期為π的奇函數(shù)是( )
(A)y=sin(2x+) (B)y=cos(2x+)
(C)y=sin(2x+) (D)y=sin(x+)
【答案】B
【解析】 A中,y=sin(2x+),即y=cos 2x,為偶函數(shù);C,D中,函數(shù)為非奇非偶函數(shù);B中,y=cos(2x+)=-sin 2x,是奇函數(shù),T==π,故選B.
2.定義在R上的函數(shù)f(x)既是偶函數(shù),又是周期函數(shù),若f(x)的最小正周期為π,且當(dāng)x∈時,f(x)=sin x,則f 等于 ( )
A.- B.1 C.- D.
【答案】D
【解析】因為f(x)的最小正周期為T=π,
所以f =f =f ,
又y=f(x)是偶函數(shù),所以f(-x)=f(x).
所以f =f =f =sin=.
題型三 正、余弦函數(shù)的單調(diào)性
例3求函數(shù)y=sin(x+)的單調(diào)區(qū)間.
【答案】略.
【解析】當(dāng)-+2kπ≤x+≤+2kπ(k∈Z)時函數(shù)單調(diào)遞增,所以函數(shù)的單調(diào)遞增區(qū)間為[-+,+](k∈Z).當(dāng)+2kπ≤x+≤+2kπ(k∈Z)時函數(shù)單調(diào)遞減,所以函數(shù)的單調(diào)遞減區(qū)間為[+,+](k∈Z).
解題技巧:(求單調(diào)區(qū)間的步驟)
(1)用“基本函數(shù)法”求函數(shù)y=Asin(ωx+φ)(A>0,ω>0)或
y=Acos(ωx+φ)(A>0,ω>0)的單調(diào)區(qū)間的步驟:
第一步:寫出基本函數(shù)y=sin x(或y=cos x)的相應(yīng)單調(diào)區(qū)間;
第二步:將“ωx+φ”視為整體替換基本函數(shù)的單調(diào)區(qū)間(用不等式表示)中的“x”;
第三步:解關(guān)于x的不等式.
(2)對于形如y=Asin(ωx+φ)的三角函數(shù)的單調(diào)區(qū)間問題,當(dāng)ω<0時,可先用誘導(dǎo)公式轉(zhuǎn)化為y=-Asin(-ωx-φ),則y=Asin(-ωx-φ)的單調(diào)遞增區(qū)間即為原函數(shù)的單調(diào)遞減區(qū)間,單調(diào)遞減區(qū)間即為原函數(shù)的單調(diào)遞增區(qū)間.余弦函數(shù)y=Acos(ωx+φ)的單調(diào)性討論同上.另外,值得注意的是k∈Z這一條件不能省略.
跟蹤訓(xùn)練三
1.求函數(shù)y=2sin的單調(diào)增區(qū)間.
【答案】略.
【解析】y=2sin=-2sin,令z=x-,則y=-2sin z,求y=-2sin z的增區(qū)間,即求y=sin z的減區(qū)間,所以+2kπ≤z≤+2kπ(k∈Z),
即+2kπ≤x-≤+2kπ(k∈Z),解得+2kπ≤x≤+2kπ(k∈Z),
所以y=2sin的單調(diào)增區(qū)間是(k∈Z).
題型四 正弦函數(shù)、余弦函數(shù)單調(diào)性的應(yīng)用
例4 比較下列各組中函數(shù)值的大?。?/p>
(1)cos與cos;
(2)sin 194與cos 160.
【答案】(1)cos<cos;(2)sin 194>cos 160.
【解析】(1)cos=cos=cos,
cos=cos=cos,
∵π<<<2π,且函數(shù)y=cos x在[π,2π]上單調(diào)遞增,
∴cos<cos,即cos<cos.
(2)sin 194=sin(180+14)=-sin 14,
cos 160=cos(180-20)=-cos 20=-sin70.
∵0<14<70<90,且函數(shù)y=sin x在0<x<90時單調(diào)遞增,∴sin 14<sin 70.
從而-sin 14>-sin 70,即sin 194>cos160.
解題方法(比較兩個三角函數(shù)值的大?。?/p>
(1)比較兩個同名三角函數(shù)值的大小,先利用誘導(dǎo)公式把兩個角化為同一單調(diào)區(qū)間內(nèi)的角,再利用函數(shù)的單調(diào)性比較.
(2)比較兩個不同名的三角函數(shù)值的大小,一般應(yīng)先化為同名的三角函數(shù),后面步驟同上.
(3)已知正(余)弦函數(shù)的單調(diào)性求參數(shù)范圍,多用數(shù)形結(jié)合思想及轉(zhuǎn)化思想求解.
跟蹤訓(xùn)練四
1.下列結(jié)論正確的是 ( )
A.sin400>sin 50 B.sin 220 C.cos130>cos 200 D.cos(-40) 【答案】C. 【解析】由cos 130=cos(180-50)=-cos50,cos 200=cos(180+20)=-cos 20,因為當(dāng)0 題型五 正、余弦函數(shù)的值域與最值問題 例5 求下列函數(shù)的值域: (1)y=cos(x+),x∈[0,]; (2)y=cos2x-4cosx+5. 【答案】(1)[-,] ;(2)[2,10]. 【解析】(1)由x∈[0,]可得 x+∈[,], 函數(shù)y=cos x在區(qū)間[,]上單調(diào)遞減,所以函數(shù)的值域為[-,]. (2)y=cos2x-4cos x+5,令t=cos x, 則-1≤t≤1. y=t2-4t+5=(, 當(dāng)t=-1時,函數(shù)取得t-2)2+1最大值10; t=1時,函數(shù)取得最小值2,所以函數(shù)的值域為[2,10]. 解題方法(三角函數(shù)的值域問題解題思路)
轉(zhuǎn)載請注明出處!本文地址:
http://ibju.cn/worddetails_58635450.html一是要把好正確導(dǎo)向。嚴(yán)格落實主體責(zé)任,逐條逐項細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實實在在的成效。更加深刻領(lǐng)會到******主義思想的科學(xué)體系、核心要義、實踐要求,進(jìn)一步堅定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺運用的創(chuàng)新理論研究新情況、解決新問題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開展好各類理論宣講和文化活動,發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對。加強(qiáng)職工群眾熱點問題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對。
二是深耕意識形態(tài)。加強(qiáng)意識形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時間節(jié)點,科學(xué)分析研判意識形態(tài)領(lǐng)域情況,旗幟鮮明反對和抵制各種錯誤觀點,有效防范處置風(fēng)險隱患。積極響應(yīng)和高效落實上級黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項,有針對性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評價體系。二是縱深推進(jìn)基層黨建,打造堅強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實施黨建工作模式,繼續(xù)打造黨建品牌,抓實“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開展黨員教育學(xué)習(xí)活動,以實際行動推動黨建工作和經(jīng)營發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺。
二要專注于解決問題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實際情況,全面了解群眾的真實需求,解決相關(guān)問題,并針對科技工作中存在的問題,采取實際措施,推動問題的實際解決。三要專注于急難愁盼問題。優(yōu)化“民聲熱線”,推動解決一系列基層民生問題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺。目前,“民聲熱線”已回應(yīng)了群眾的8個政策問題,并成功解決其中7個問題,真正使人民群眾感受到了實質(zhì)性的變化和效果。接下來,我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實際的措施和更好的成果,不斷深化主題教育的實施,展現(xiàn)新的風(fēng)貌和活力。
今年3月,市政府出臺《關(guān)于加快打造更具特色的“水運XX”的意見》,提出到2025年,“蘇南運河全線達(dá)到準(zhǔn)二級,實現(xiàn)2000噸級舶全天候暢行”。作為“水運XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開工在即,但項目開工前還有許多實際問題亟需解決。結(jié)合“到一線去”專項行動,我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計方案。牢牢把握高質(zhì)量發(fā)展這個首要任務(wù),在學(xué)思踐悟中開創(chuàng)建功之業(yè),堅定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動交通運輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動高質(zhì)量發(fā)展持續(xù)走在前列。新時代中國特色社會主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動高質(zhì)量發(fā)展,提出了新發(fā)展階段我國經(jīng)濟(jì)高質(zhì)量發(fā)展要堅持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實踐價值。
三、2024年工作計劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開展活動的上傳力度,確保年度目標(biāo)任務(wù)按時保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實際和文旅資源優(yōu)勢,進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動“雙減”政策走深走實。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國家全域旅游示范區(qū)驗收標(biāo)準(zhǔn)》要求,極推動旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。
(三)全力以赴抓保護(hù)、重治理,著力厚植生態(tài)文明新優(yōu)勢一是守住生態(tài)紅線。堅定不移踐行“兩山”理念,堅持精準(zhǔn)治污、科學(xué)治污、依法治污,推深做實“河(湖)長制”“林長制”“田長制”工作,狠抓污染防治。二是統(tǒng)籌生態(tài)保護(hù)。重點開展農(nóng)業(yè)面源污染防治,重拳打擊固廢非法轉(zhuǎn)移傾倒行為,集中力量攻克解決群眾身邊的突出生態(tài)環(huán)境問題。三是推動綠色發(fā)展。倡導(dǎo)綠色生產(chǎn)生活方式,加強(qiáng)垃圾分類處理,健全生態(tài)產(chǎn)品價值實現(xiàn)機(jī)制,促進(jìn)經(jīng)濟(jì)社會發(fā)展全面綠色轉(zhuǎn)型,努力建設(shè)人與自然和諧共生的美麗鼎新。(四)全力以赴抓改革、求創(chuàng)新,著力激發(fā)經(jīng)濟(jì)發(fā)展新活力一是深化重點改革。深化“三變”改革,規(guī)范“三資”管理,有效盤活閑置資源,夯實集體經(jīng)濟(jì)基礎(chǔ),帶動農(nóng)民增收致富。深化供銷社綜合改革,積極承接農(nóng)村各類服務(wù)資源,加快構(gòu)建綜合性、規(guī)?;?、可持續(xù)的為農(nóng)服務(wù)體系。
一是XX單位下轄的部分黨支部和黨員干部個人的自我檢視不夠,特別是抓整改的措施落實得還不夠全面,還有一些問題沒有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問題導(dǎo)向,采取積極有效措施徹底解決以上存在的問題,確保主題教育實現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動性和自覺性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書記的要求,持之以恒,發(fā)揚“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實釘牢。二是主動運用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅定地與上級黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點,圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實實推進(jìn)中心工作。
二是全力推進(jìn)在談項目落地。認(rèn)真落實“首席服務(wù)官”責(zé)任制,切實做好上海中道易新材料有機(jī)硅復(fù)配硅油項目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項目、天勤生物生物實驗基地項目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項目、三一重能風(fēng)力發(fā)電項目、中國供銷集團(tuán)冷鏈物流項目跟蹤對接,協(xié)調(diào)解決項目落戶過程中存在的困難和問題,力爭早日實現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實項目建設(shè)“6421”時限及“每月通報、季度排名、半年分析、年終獎勵”相關(guān)要求,通過“比實績、曬單子、亮數(shù)據(jù)、拼項目”,進(jìn)一步營造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。
(五)實施融合促進(jìn)工程,切實發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅持推動黨建與業(yè)務(wù)工作深度融合,堅持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動基層治理體系和治理能力現(xiàn)代化的實施意見》,組織開展“我為群眾辦實事”“雙報到”實踐活動300余次。邀請市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報告”警營開放日活動,在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來的忠誠擔(dān)當(dāng)、清正廉潔、無私奉獻(xiàn)的,選樹28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個先進(jìn)基層黨組織,充分發(fā)揮正向激勵作用,營造學(xué)習(xí)典型、爭做典型、弘揚典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。
一是及時傳達(dá)學(xué)習(xí)xxx總書記重要指示精神。堅持把學(xué)習(xí)貫徹xxx總書記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會及時傳達(dá)學(xué)習(xí),并就貫徹落實指示精神提出具體措施,扎實抓好我局領(lǐng)導(dǎo)班子和干部隊伍建設(shè),以實際工作業(yè)績彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅持把考察了解班子和干部的功夫下在平時,定期開展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點了解班子運行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽取干部群眾對班子和干部的評價,掌握班子成員個人思想動態(tài)和意愿訴求。同時,將研判中發(fā)現(xiàn)的政治堅定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實做好干部儲備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實干部監(jiān)督工作聯(lián)席會議制度,定期與紀(jì)檢、公檢法、信訪、審計等部門溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。
2024年是XX油田剛性推進(jìn)“三年一盤棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點,邁向新征程,公司既面對難得發(fā)展機(jī)遇,也面臨不少風(fēng)險挑戰(zhàn)。開展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動,就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時代中國特色社會主義思想和黨的XX大精神,全面貫徹落實中油集團(tuán)公司2024年工作會議和油田公司、公司“兩會”各項工作部署,始終不忘“我為祖國獻(xiàn)石油”的初心,深刻認(rèn)識油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅定“服務(wù)油田開發(fā)”主導(dǎo)思想不動搖,圍繞“12345”發(fā)展戰(zhàn)略,推動服務(wù)水平再提檔、再升級,加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。
(二)堅持問題導(dǎo)向,持續(xù)改進(jìn)工作。要繼續(xù)在提高工作效率和服務(wù)質(zhì)量上下功夫,積極學(xué)習(xí)借鑒其他部門及xx關(guān)于“四零”承諾服務(wù)創(chuàng)建工作的先進(jìn)經(jīng)驗,同時主動查找并著力解決困擾企業(yè)和群眾辦事創(chuàng)業(yè)的難點問題。要進(jìn)一步探索創(chuàng)新,繼續(xù)優(yōu)化工作流程,精簡審批程序,縮短辦事路徑,壓縮辦理時限,深化政務(wù)公開,努力為企業(yè)當(dāng)好“保姆”,為群眾提供便利,不斷適應(yīng)新時代人民群眾對政務(wù)服務(wù)的新需求。(三)深化內(nèi)外宣傳,樹立良好形象。要深入挖掘并及時總結(jié)作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作中形成的典型經(jīng)驗做法,進(jìn)一步強(qiáng)化內(nèi)部宣傳與工作交流,推動全市創(chuàng)建工作質(zhì)效整體提升。要面向社會和公眾莊嚴(yán)承諾并積極踐諾,主動接受監(jiān)督,同時要依托電臺、電視臺、報紙及微信、微博等各類媒體大力宣傳xx隊伍作風(fēng)整頓“四零”承諾服務(wù)創(chuàng)建工作成果,不斷擴(kuò)大社會知情面和群眾知曉率。