提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

新人教版高中英語選修2Unit 4 Reading and thinking教學設計

  • 人教A版高中數學必修一函數的表示法教學設計(1)

    人教A版高中數學必修一函數的表示法教學設計(1)

    本節(jié)課選自《普通高中課程標準數學教科書-必修一》(人教A版)第三章《函數的概念與性質》,本節(jié)課是第2課時,本節(jié)課主要學習函數的三種表示方法及其簡單應用,進一步加深對函數概念的理解。課本從引進函數概念開始就比較注重函數的不同表示方法:解析法,圖象法,列表法.函數的不同表示方法能豐富對函數的認識,幫助理解抽象的函數概念.特別是在信息技術環(huán)境下,可以使函數在形與數兩方面的結合得到更充分的表現,使學生通過函數的學習更好地體會數形結合這種重要的數學思想方法.因此,在研究函數時,要充分發(fā)揮圖象的直觀作用.課程目標 學科素養(yǎng)A.在實際情景中,會根據不同的需要選擇恰當的方法(解析式法、圖象法、列表法)表示函數;B.了解簡單的分段函數,并能簡單地應用;1.數學抽象:函數解析法及能由條件求函數的解析式;2.邏輯推理:求函數的解析式;

  • 人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    人教A版高中數學必修一函數的零點與方程的解教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.5.1節(jié)《函數零點與方程的解》,由于學生已經學過一元二次方程與二次函數的關系,本節(jié)課的內容就是在此基礎上的推廣。從而建立一般的函數的零點概念,進一步理解零點判定定理及其應用。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1、了解函數(結合二次函數)零點的概念;2、理 解函數零點與方程的根以及函數圖象與x軸交點的關系,掌握零點存在性定理的運用;3、在認識函數零點的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學數形結合及函數思想; a.數學抽象:函數零點的概念;b.邏輯推理:零點判定定理;c.數學運算:運用零點判定定理確定零點范圍;d.直觀想象:運用圖形判定零點;e.數學建模:運用函數的觀點方程的根;

  • 人教A版高中數學必修一集合的基本運算教學設計(1)

    人教A版高中數學必修一集合的基本運算教學設計(1)

    本節(jié)是新人教A版高中數學必修1第1章第1節(jié)第3部分的內容。在此之前,學生已學習了集合的含義以及集合與集合之間的基本關系,這為學習本節(jié)內容打下了基礎。本節(jié)內容主要介紹集合的基本運算一并集、交集、補集。是對集合基木知識的深入研究。在此,通過適當的問題情境,使學生感受、認識并掌握集合的三種基本運算。本節(jié)內容是函數、方程、不等式的基礎,在教材中起著承上啟下的作用。本節(jié)內容是高中數學的主要內容,也是高考的對象,在實踐中應用廣泛,是高中學生必須掌握的重點。A.理解兩個集合的并集與交集的含義,會求簡單集合的交、并運算;B.理解補集的含義,會求給定子集的補集;C.能使用 圖表示集合的關系及運算。 1.數學抽象:集合交集、并集、補集的含義;2.數學運算:集合的運算;3.直觀想象:用 圖、數軸表示集合的關系及運算。

  • 人教A版高中數學必修二古典概型和概率的基本性質教學設計

    人教A版高中數學必修二古典概型和概率的基本性質教學設計

    新知講授(一)——古典概型 對隨機事件發(fā)生可能性大小的度量(數值)稱為事件的概率。我們將具有以上兩個特征的試驗稱為古典概型試驗,其數學模型稱為古典概率模型,簡稱古典概型。即具有以下兩個特征:1、有限性:樣本空間的樣本點只有有限個;2、等可能性:每個樣本點發(fā)生的可能性相等。思考一:下面的隨機試驗是不是古典概型?(1)一個班級中有18名男生、22名女生。采用抽簽的方式,從中隨機選擇一名學生,事件A=“抽到男生”(2)拋擲一枚質地均勻的硬幣3次,事件B=“恰好一次正面朝上”(1)班級中共有40名學生,從中選擇一名學生,即樣本點是有限個;因為是隨機選取的,所以選到每個學生的可能性都相等,因此這是一個古典概型。

  • 人教A版高中數學必修一用二分法求方程的近似解教學設計(1)

    人教A版高中數學必修一用二分法求方程的近似解教學設計(1)

    《數學1必修本(A版)》的第五章4.5.2用二分法求方程的近似解.本節(jié)課要求學生根據具體的函數圖象能夠借助計算機或信息技術工具計算器用二分法求相應方程的近似解,了解這種方法是求方程近似解的常用方法,從中體會函數與方程之間的聯(lián)系;它既是本冊書中的重點內容,又是對函數知識的拓展,既體現了函數在解方程中的重要應用,同時又為高中數學中函數與方程思想、數形結合思想、二分法的算法思想打下了基礎,因此決定了它的重要地位.發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。課程目標 學科素養(yǎng)1.通過具體實例理解二分法的概念及其使用條件.2.了解二分法是求方程近似解的常用方法,能借助計算器用二分法求方程的近似解.3.會用二分法求一個函數在給定區(qū)間內的零點,從而求得方程的近似解. a.數學抽象:二分法的概念;b.邏輯推理:運用二分法求近似解的原理;

  • 人教A版高中數學必修二空間點、直線、平面之間的位置關系教學設計

    人教A版高中數學必修二空間點、直線、平面之間的位置關系教學設計

    9.例二:如圖,AB∩α=B,A?α, ?a.直線AB與a具有怎樣的位置關系?為什么?解:直線AB與a是異面直線。理由如下:若直線AB與a不是異面直線,則它們相交或平行,設它們確定的平面為β,則B∈β, 由于經過點B與直線a有且僅有一個平面α,因此平面平面α與β重合,從而 , 進而A∈α,這與A?α矛盾。所以直線AB與a是異面直線。補充說明:例二告訴我們一種判斷異面直線的方法:與一個平面相交的直線和這個平面內不經過交點的直線是異面直線。10. 例3 已知a,b,c是三條直線,如果a與b是異面直線,b與c是異面直線,那么a與c有怎樣的位置關系?并畫圖說明.解: 直線a與直線c的位置關系可以是平行、相交、異面.如圖(1)(2)(3).總結:判定兩條直線是異面直線的方法(1)定義法:由定義判斷兩條直線不可能在同一平面內.

  • 人教A版高中數學必修二立體圖形直觀圖教學設計

    人教A版高中數學必修二立體圖形直觀圖教學設計

    1.直觀圖:表示空間幾何圖形的平面圖形,叫做空間圖形的直觀圖直觀圖往往與立體圖形的真實形狀不完全相同,直觀圖通常是在平行投影下得到的平面圖形2.給出直觀圖的畫法斜二側畫法觀察:矩形窗戶在陽光照射下留在地面上的影子是什么形狀?眺望遠處成塊的農田,矩形的農田在我們眼里又是什么形狀呢?3. 給出斜二測具體步驟(1)在已知圖形中取互相垂直的X軸Y軸,兩軸相交于O,畫直觀圖時,把他們畫成對應的X'軸與Y'軸,兩軸交于O'。且使∠X'O'Y'=45°(或135°)。他們確定的平面表示水平面。(2)已知圖形中平行于X軸或y軸的線段,在直觀圖中分別畫成平行于X'軸或y'軸的線段。(3)已知圖形中平行于X軸的線段,在直觀圖中保持原長度不變,平行于Y軸的線段,在直觀圖中長度為原來一半。4.對斜二測方法進行舉例:對于平面多邊形,我們常用斜二測畫法畫出他們的直觀圖。如圖 A'B'C'D'就是利用斜二測畫出的水平放置的正方形ABCD的直觀圖。其中橫向線段A'B'=AB,C'D'=CD;縱向線段A'D'=1/2AD,B'C'=1/2BC;∠D'A'B'=45°,這與我們的直觀觀察是一致的。5.例一:用斜二測畫法畫水平放置的六邊形的直觀圖(1)在六邊形ABCDEF中,取AD所在直線為X軸,對稱軸MN所在直線為Y軸,兩軸交于O',使∠X'oy'=45°(2)以o'為中心,在X'上取A'D'=AD,在y'軸上取M'N'=½MN。以點N為中心,畫B'C'平行于X'軸,并且等于BC;再以M'為中心,畫E'F'平行于X‘軸并且等于EF。 (3)連接A'B',C'D',E'F',F'A',并擦去輔助線x軸y軸,便獲得正六邊形ABCDEF水平放置的直觀圖A'B'C'D'E'F' 6. 平面圖形的斜二測畫法(1)建兩個坐標系,注意斜坐標系夾角為45°或135°;(2)與坐標軸平行或重合的線段保持平行或重合;(3)水平線段等長,豎直線段減半;(4)整理.簡言之:“橫不變,豎減半,平行、重合不改變?!?/p>

  • 人教A版高中數學必修二平面與平面平行教學設計

    人教A版高中數學必修二平面與平面平行教學設計

    1.探究:根據基本事實的推論2,3,過兩條平行直線或兩條相交直線,有且只有一個平面,由此可以想到,如果一個平面內有兩條相交或平行直線都與另一個平面平行,是否就能使這兩個平面平行?如圖(1),a和b分別是矩形硬紙板的兩條對邊所在直線,它們都和桌面平行,那么硬紙板和桌面平行嗎?如圖(2),c和d分別是三角尺相鄰兩邊所在直線,它們都和桌面平行,那么三角尺與桌面平行嗎?2.如果一個平面內有兩條平行直線與另一個平面平行,這兩個平面不一定平行。我們借助長方體模型來說明。如圖,在平面A’ADD’內畫一條與AA’平行的直線EF,顯然AA’與EF都平行于平面DD’CC’,但這兩條平行直線所在平面AA’DD’與平面DD’CC’相交。3.如果一個平面內有兩條相交直線與另一個平面平行,這兩個平面是平行的,如圖,平面ABCD內兩條相交直線A’C’,B’D’平行。

  • 人教A版高中數學必修二向量的減法運算教學設計

    人教A版高中數學必修二向量的減法運算教學設計

    新知探究:向量的減法運算定義問題四:你能根據實數的減法運算定義向量的減法運算嗎?由兩個向量和的定義已知 即任意向量與其相反向量的和是零向量。求兩個向量差的運算叫做向量的減法。我們看到,向量的減法可以轉化為向量的加法來進行:減去一個向量相當于加上這個向量的相反向量。即新知探究(二):向量減法的作圖方法知識探究(三):向量減法的幾何意義問題六:根據問題五,思考一下向量減法的幾何意義是什么?問題七:非零共線向量怎樣做減法運算? 問題八:非零共線向量怎樣做減法運算?1.共線同向2.共線反向小試牛刀判一判(正確的打“√”,錯誤的打“×”)(1)兩個向量的差仍是一個向量。 (√ )(2)向量的減法實質上是向量的加法的逆運算. ( √ )(3)向量a與向量b的差與向量b與向量a的差互為相反向量。 ( √ )(4)相反向量是共線向量。 ( √ )

  • 人教A版高中數學必修二直線與平面垂直教學設計

    人教A版高中數學必修二直線與平面垂直教學設計

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.③符號語言:任意a?α,都有l(wèi)⊥a?l⊥α.

  • 人教A版高中數學必修二直線與平面垂直教學設計

    人教A版高中數學必修二直線與平面垂直教學設計

    1.觀察(1)如圖,在陽光下觀察直立于地面的旗桿AB及它在地面影子BC,旗桿所在直線與影子所在直線的位置關系是什么?(2)隨著時間的變化,影子BC的位置在不斷的變化,旗桿所在直線AB與其影子B’C’所在直線是否保持垂直?經觀察我們知道AB與BC永遠垂直,也就是AB垂直于地面上所有過點B的直線。而不過點B的直線在地面內總是能找到過點B的直線與之平行。因此AB與地面上所有直線均垂直。一般地,如果一條直線與一個平面α內所有直線均垂直,我們就說l垂直α,記作l⊥α。2.定義:①文字敘述:如果直線l與平面α內的所有 直線都垂直,就說直線l與平面α互相垂直,記作l⊥α.直線l叫做平面α的垂線,平面α叫做直線l的垂面.直線與平面垂直時,它們唯一的公共點P叫做交點.②圖形語言:如圖.畫直線l與平面α垂直時,通常把直線畫成與表示平面的平行四邊形的一邊垂直.

  • 人教A版高中數學必修二平面與平面垂直教學設計

    人教A版高中數學必修二平面與平面垂直教學設計

    6. 例二:如圖,AB是⊙O的直徑,PA垂直于⊙O所在的平面,C是圓周上的一點,且PA=AC,求二面角P-BC-A的大小. 解:由已知PA⊥平面ABC,BC在平面ABC內∴PA⊥BC∵AB是⊙O的直徑,且點C在圓周上,∴AC⊥BC又∵PA∩AC=A,PA,AC在平面PAC內,∴BC⊥平面PAC又PC在平面PAC內,∴PC⊥BC又∵BC是二面角P-BC-A的棱,∴∠PCA是二面角P-BC-A的平面角由PA=AC知△PAC是等腰直角三角形∴∠PCA=45°,即二面角P-BC-A的大小是45°7.面面垂直定義一般地,兩個平面相交,如果它們所成的二面角是直二面角,就說這兩個平面互相垂直,平面α與β垂直,記作α⊥β8. 探究:建筑工人在砌墻時,常用鉛錘來檢測所砌的墻面與地面是否垂直,如果系有鉛錘的細繩緊貼墻面,工人師傅被認為墻面垂直于地面,否則他就認為墻面不垂直于地面,這種方法說明了什么道理?

  • 人教A版高中數學必修一充分條件與必要條件教學設計(1)

    人教A版高中數學必修一充分條件與必要條件教學設計(1)

    本課是高中數學第一章第4節(jié),充要條件是中學數學中最重要的數學概念之一, 它主要討論了命題的條件與結論之間的邏輯關系,目的是為今后的數學學習特別是數學推理的學習打下基礎。從學生學習的角度看,與舊教材相比,教學時間的前置,造成學生在學習充要條件這一概念時的知識儲備不夠豐富,邏輯思維能力的訓練不夠充分,這也為教師的教學帶來一定的困難.“充要條件”這一節(jié)介紹了充分條件,必要條件和充要條件三個概念,由于這些概念比較抽象,中學生不易理解,用它們去解決具體問題則更為困難,因此”充要條件”的教學成為中學數學的難點之一,而必要條件的定義又是本節(jié)內容的難點.A.正確理解充分不必要條件、必要不充分條件、充要條件的概念;B.會判斷命題的充分條件、必要條件、充要條件.C.通過學習,使學生明白對條件的判定應該歸結為判斷命題的真假.D.在觀察和思考中,在解題和證明題中,培養(yǎng)學生思維能力的嚴密性品質.

  • 人教A版高中數學必修一不同增長函數的差異教學設計(1)

    人教A版高中數學必修一不同增長函數的差異教學設計(1)

    本節(jié)課是新版教材人教A版普通高中課程標準實驗教科書數學必修1第四章第4.4.3節(jié)《不同增長函數的差異》 是在學習了指數函數、對數函數和冪函數之后的對函數學習的一次梳理和總結。本節(jié)提出函數增長快慢的問題,通過函數圖像及三個函數的性質,完成函數增長快慢的認識。既是對三種函數學習的總結,也為后續(xù)導數的學習做了鋪墊。培養(yǎng)和發(fā)展學生數學直觀、數學抽象、邏輯推理和數學建模的核心素養(yǎng)。1.了解指數函數、對數函數、冪函數 (一次函數) 的增長差異.2、經過探究對函數的圖像觀察,理解對數增長、直線上升、指數爆炸。培養(yǎng)學生觀察問題、分析問題和歸納問題的思維能力以及數學交流能力;3、在認識函數增長差異的過程中,使學生學會認識事物的特殊性與一般性之間的關系,培養(yǎng)數學應用的意識,探索數學。 a.數學抽象:函數增長快慢的認識;b.邏輯推理:由特殊到一般的推理;

  • 人教A版高中數學必修一集合間的基本關系教學設計(1)

    人教A版高中數學必修一集合間的基本關系教學設計(1)

    本節(jié)內容來自人教版高中數學必修一第一章第一節(jié)集合第二課時的內容。集合論是現代數學的一個重要基礎,是一個具有獨特地位的數學分支。高中數學課程是將集合作為一種語言來學習,在這里它是作為刻畫函數概念的基礎知識和必備工具。本小節(jié)內容是在學習了集合的含義、集合的表示方法以及元素與集合的屬于關系的基礎上,進一步學習集合與集合之間的關系,同時也是下一節(jié)學習集合間的基本運算的基礎,因此本小節(jié)起著承上啟下的關鍵作用.通過本節(jié)內容的學習,可以進一步幫助學生利用集合語言進行交流的能力,幫助學生養(yǎng)成自主學習、合作交流、歸納總結的學習習慣,培養(yǎng)學生從具體到抽象、從一般到特殊的數學思維能力,通過Venn圖理解抽象概念,培養(yǎng)學生數形結合思想。

  • 人教A版高中數學必修一簡單的三角恒等變換教學設計(1)

    人教A版高中數學必修一簡單的三角恒等變換教學設計(1)

    四、小結1.知識:如何采用兩角和或差的正余弦公式進行合角,借助三角函數的相關性質求值.其中三角函數最值問題是對三角函數的概念、圖像和性質,以及誘導公式、同角三角函數基本關系、和(差)角公式的綜合應用,也是函數思想的具體體現. 如何科學的把實際問題轉化成數學問題,如何選擇自變量建立數學關系式;求解三角函數在某一區(qū)間的最值問題.2.思想:本節(jié)課通過由特殊到一般方式把關系式 化成 的形式,可以很好地培養(yǎng)學生探究、歸納、類比的能力. 通過探究如何選擇自變量建立數學關系式,可以很好地培養(yǎng)學生分析問題、解決問題的能力和應用意識,進一步培養(yǎng)學生的建模意識.五、作業(yè)1. 課時練 2. 預習下節(jié)課內容學生根據課堂學習,自主總結知識要點,及運用的思想方法。注意總結自己在學習中的易錯點;

  • 人教A版高中數學必修二事件的相互獨立性教學設計

    人教A版高中數學必修二事件的相互獨立性教學設計

    問題導入:問題一:試驗1:分別拋擲兩枚質地均勻的硬幣,A=“第一枚硬幣正面朝上”,B=“第二枚硬幣正面朝上”。事件A的發(fā)生是否影響事件B的概率?因為兩枚硬幣分別拋擲,第一枚硬幣的拋擲結果與第二枚硬幣的拋擲結果互相不受影響,所以事件A發(fā)生與否不影響事件B發(fā)生的概率。問題二:計算試驗1中的P(A),P(B),P(AB),你有什么發(fā)現?在該試驗中,用1表示硬幣“正面朝上”,用0表示“反面朝上”,則樣本空間Ω={(1,1),(1,0),(0,1),(0,0)},包含4個等可能的樣本點。而A={(1,1),(1,0)},B={(1,0),(0,0)}所以AB={(1,0)}由古典概率模型概率計算公式,得P(A)=P(B)=0.5,P(AB)=0.25, 于是 P(AB)=P(A)P(B)積事件AB的概率恰好等于事件A、B概率的乘積。問題三:試驗2:一個袋子中裝有標號分別是1,2,3,4的4個球,除標號外沒有其他差異。

  • 人教A版高中數學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    人教A版高中數學必修二圓柱、圓錐、圓臺和球的表面積與體積教學設計

    1.圓柱、圓錐、圓臺的表面積與多面體的表面積一樣,圓柱、圓錐、圓臺的表面積也是圍成它的各個面的面積和。利用圓柱、圓錐、圓臺的展開圖如圖,可以得到它們的表面積公式:2.思考1:圓柱、圓錐、圓臺的表面積之間有什么關系?你能用圓柱、圓錐、圓臺的結構特征來解釋這種關系嗎?3.練習一圓柱的一個底面積是S,側面展開圖是一個正方體,那么這個圓柱的側面積是( )A 4πS B 2πS C πS D 4.練習二:如圖所示,在邊長為4的正三角形ABC中,E,F分別是AB,AC的中點,D為BC的中點,H,G分別是BD,CD的中點,若將正三角形ABC繞AD旋轉180°,求陰影部分形成的幾何體的表面積.5. 圓柱、圓錐、圓臺的體積對于柱體、錐體、臺體的體積公式的認識(1)等底、等高的兩個柱體的體積相同.(2)等底、等高的圓錐和圓柱的體積之間的關系可以通過實驗得出,等底、等高的圓柱的體積是圓錐的體積的3倍.

  • 初中數學人教版二元一次方程組教學設計教案

    初中數學人教版二元一次方程組教學設計教案

    (一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領學生一起列出方程組)解:設勝X場,負Y場。根據:勝的場數+負的場數=總場數 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16

  • 新人教版高中英語必修1Unit 1 Teenage Life-Reading and Thinking教案

    新人教版高中英語必修1Unit 1 Teenage Life-Reading and Thinking教案

    【教材分析】The topic of this unit is about teenage life, which belongs to the theme context of “humans and oneself”.As teenagers who shoulder the responsibility of “Chinese great dream”, they must fully know themselves, including their strengths, weaknesses and challenges etc. They are supposed to improve themselves continuously and readily study their subjects, and thus foster their strategies and confidence in lifelong studies.This period is entitled the freshmen challenges, which mainly concerns some big challenges for new students in Senior high school. In this period, a teacher should lead students to find out what their challenges are and guide them to figure out how to crack the challenges and better themselves. More importantly, a teacher should instruct students to absorb new language points and appreciate the language. Besides, a teacher must instruct students to acquire some skills concerning reading efficiently and inspire them to talk more about their new school life, especially their new problems and solutions both at school and in life.【教學目標與核心素養(yǎng)】1. Enable students to acquire the basic usage of the new words and expressions concerning the freshmen challenges and learn to use them flexibly.2. Enable students to have a good understanding of the freshmen challenges in the new senior high school which is quite different from junior middle school.3. Develop students’ sense of cooperative learning and individual thinking capability. 4. Develop students’ different learning skills to solve different reading comprehensive problems.

上一頁123...5678910111213141516下一頁
提供各類高質量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。