
文本分析《琵琶行》作為白居易最為出名的詩歌之一,內(nèi)容詳實,情感動人,在詩歌中,白居易塑造了兩個形象極為鮮明的人物——琵琶女&作者本人。一個是江湖薄命人,一個是官場失意者。兩個本無交集的人因為京都琵琶聲相遇,互訴衷腸后,發(fā)出“同是天涯淪落人,相逢何必曾相識“的感慨

1.整理用字母表示數(shù)。(1)梳理知識:用字母表示數(shù)量關(guān)系:師:用字母可以表示什么?生:用字母表示運算定律用字母表示計算公式用字母表示計算方法師:你能舉例說明嗎?生:字母表示 數(shù)量關(guān)系路程=速度×時間 s=vt總價=單價×數(shù)量 c=an工作總量=工作效率×工作時間 c=at(2)字母表示計算方法:+=(3)用字母表示計算公式。師:用字母可以表示哪些平面圖形的計算公式生:長方形 周長 c=(a+b) ×2 面積:s=ab 正方形 周長 c=4a 面積:s=a2 平行四邊形 面積 s =ah三角形 面積 s=ah¸2 梯形 面積 s=(a+b)·h¸2 圓 周長c=πd=2πr 面積 s=πr2(4)用字母表示運算定律加法交換律 a+b=b+a 加法結(jié)合律 (a+b)+c=a+(b+c)乘法交換律 a×b=b×a乘法結(jié)合律 (a×b)×c=a×(b×c)乘法分配律 (a+b)×c=a×c+b×c2.在一個含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時應(yīng)注意的問題。師:在一個含有字母的式子里,數(shù)與字母、字母與字母相乘,書寫時應(yīng)注意什么?生交流:(1)在含有字母的式子里,數(shù)和字母中間的乘號可以用“?”代替,也可以省略不寫。(2)省略乘號時,應(yīng)當(dāng)把數(shù)寫在字母的前面。(3)數(shù)與數(shù)之間的乘號不能省略。加號、減號、除號都不能省略。3. 典題訓(xùn)練(1)填一填。①李奶奶家本月用電a千瓦時,比上個月多用10千瓦時,上個月用電( )千瓦時。②如果每千瓦時電的價格是c元,李奶奶家本月的電費是( )元。李奶奶家銀行繳費卡上原有215元,扣除本月電費后,還剩( )元。③小明今年m 歲,媽媽的歲數(shù)比她的3倍少6歲。媽媽的歲數(shù)是( )歲。如果m=12,媽媽今年是( )歲。④三個連續(xù)的自然數(shù),最大的一個是n,那么最小的一個數(shù)是( )。(2)連 一 連。比a多3的數(shù) a3比a少3的數(shù) 3a3個a相加的和 a+33個a相乘的積 a-3a的3倍 a的

2. 教材分析這節(jié)課的教學(xué)是學(xué)生在掌握行程問題基本數(shù)量關(guān)系的基礎(chǔ)上進行的,本課教材給學(xué)生提供了“騎車”的情境,通過簡單的路線圖等方式呈現(xiàn)了速度路程等信息。然后要求學(xué)生根據(jù)這些信息去解決2個問題:①讓學(xué)生根據(jù)兩輛車的速度信息進行估計,在哪個地方相遇。②用方程解決相遇問題中求相遇時間的問題。3. 學(xué)情分析學(xué)生已經(jīng)在三年級接觸了簡單的行程問題,四年級上冊,學(xué)生就真正的開始學(xué)習(xí)速度、時間、路程之間的關(guān)系,并用三者的數(shù)量關(guān)系來解決行程問題。而本節(jié)課正是運用這些學(xué)生已有的知識基礎(chǔ)和生活經(jīng)驗進行相遇問題的探究。4、教學(xué)目標(biāo)從知識與技能、過程與方法、情感態(tài)度價值觀的三維目標(biāo)出發(fā),制定了以下的目標(biāo):①使學(xué)生理解相遇問題的意義及特點。②經(jīng)歷解決問題的過程,提高收集信息、處理信息和建立模型的能力。③會分析簡單實際問題中的數(shù)量關(guān)系,提高用方程解決簡單的實際問題的能力。

計算器的面板是由鍵盤和顯示器組成的。顯示器是用來顯示輸入的數(shù)據(jù)和計算結(jié)果的裝置。顯示器因計算器的種類不同而不同,有單行顯示的,也有雙行顯示的。在鍵盤的每個鍵上,都標(biāo)明了這個鍵的功能。我們看鍵盤上標(biāo)有的鍵,是開機鍵,在開始使用計算器時先要按一下這個鍵,以接通電源,計算器的電源一般用5號電池或鈕扣電池。再看鍵,是關(guān)機鍵,停止使用計算器時要按一下這個鍵,來切斷計算器的電源,是清除鍵,按一下這個鍵,計算器就清除當(dāng)前顯示的數(shù)與符號。的功能是完成運算或執(zhí)行命令。是運算鍵,按一下這個鍵,計算器就執(zhí)行加法運算。

問題6:觀察剛才所畫的圖象我們發(fā)現(xiàn)反比例函數(shù)的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設(shè)計:(1) 引導(dǎo)學(xué)生對比正比例函數(shù)圖象的分布,啟發(fā)他們主動探索反比例函數(shù)的分布情況,給學(xué)生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進行教學(xué),使用函數(shù)圖象的課件試著任意輸入幾個k的值,觀察函數(shù)圖象的不同分布,觀察函數(shù)圖象的動態(tài)演變過程。把不同的函數(shù)圖象集中到一個屏幕中,便于學(xué)生對比和探究。學(xué)生通過觀察及對比,對反比例函數(shù)圖象的分布與k的關(guān)系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數(shù)的一條性質(zhì):當(dāng)k>0時,函數(shù)圖象的兩支分別在第一、三象限內(nèi);當(dāng)k<0時,函數(shù)圖象的兩支分別在第二、四象限內(nèi)。

教學(xué)媒體設(shè)計充分利用多媒體教學(xué),將powerpoint、《幾何畫板》兩種軟件結(jié)合起來制作上課課件。制作的課件,不僅課堂所授容量大,而且,利用作二次函數(shù)圖像的動畫性,更加形象的反映出作圖的過程,增加數(shù)學(xué)的美感,激發(fā)學(xué)生作圖的興趣。教學(xué)評價設(shè)計本節(jié)課,我合理、充分利用了多媒體教學(xué)的手段,利用powerpoint,《幾何畫板》這兩種軟件制作了課件,特別是《幾何畫板》軟件的應(yīng)用,畫出了標(biāo)準(zhǔn)、動畫形式的二次函數(shù)的圖像,讓抽象思維不強的學(xué)生,更加形象的結(jié)合圖形,分析說出二次函數(shù)y=ax2的有關(guān)性質(zhì),充分體現(xiàn)了“數(shù)形結(jié)合”的數(shù)學(xué)思想。為了突出重點,攻破難點,我要求學(xué)生“先觀察后思考”、“先做后說”、“先討論后總結(jié)”,“師生共做”充分體現(xiàn)了教學(xué)過程中以學(xué)生為主體,老師起主導(dǎo)作用的教學(xué)原則。本節(jié)課,讓學(xué)生有觀察,有思考,有討論,有練習(xí),充分調(diào)動了學(xué)生的學(xué)習(xí)興趣,從而為高效率、高質(zhì)量地上好這一堂課作好了充分的準(zhǔn)備。

解:(1)設(shè)第一次落地時,拋物線的表達式為y=a(x-6)2+4,由已知:當(dāng)x=0時,y=1,即1=36a+4,所以a=-112.所以函數(shù)表達式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類問題的關(guān)鍵是先進行數(shù)學(xué)建模,將實際問題中的條件轉(zhuǎn)化為數(shù)學(xué)問題中的條件.常有兩個步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實際問題轉(zhuǎn)化為純數(shù)學(xué)問題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

解:∵y=23x+a與y=-12x+b的圖象都過點A(-4,0),∴32×(-4)+a=0,-12×(-4)+b=0.∴a=6,b=-2.∴兩個一次函數(shù)分別是y=32x+6和y=-12x-2.y=32x+6與y軸交于點B,則y=32×0+6=6,∴B(0,6);y=-12x-2與y軸交于點C,則y=-2,∴C(0,-2).如圖所示,S△ABC=12BC·AO=12×4×(6+2)=16.方法總結(jié):解此類題要先求得頂點的坐標(biāo),即兩個一次函數(shù)的交點和它們分別與x軸、y軸交點的坐標(biāo).三、板書設(shè)計兩個一次函數(shù)的應(yīng)用實際生活中的問題幾何問題進一步訓(xùn)練學(xué)生的識圖能力,能通過函數(shù)圖象獲取信息,解決簡單的實際問題,在函數(shù)圖象信息獲取過程中,進一步培養(yǎng)學(xué)生的數(shù)形結(jié)合意識,發(fā)展形象思維.在解決實際問題的過程中,進一步發(fā)展學(xué)生的分析問題、解決問題的能力和數(shù)學(xué)應(yīng)用意識.

方法總結(jié):要認(rèn)真觀察圖象,結(jié)合題意,弄清各點所表示的意義.探究點二:一次函數(shù)與一元一次方程一次函數(shù)y=kx+b(k,b為常數(shù),且k≠0)的圖象如圖所示,根據(jù)圖象信息可求得關(guān)于x的方程kx+b=0的解為()A.x=-1B.x=2C.x=0D.x=3解析:首先由函數(shù)經(jīng)過點(0,1)可得b=1,再將點(2,3)代入y=kx+1,可求出k的值為1,從而可得出一次函數(shù)的表達式為y=x+1,再求出方程x+1=0的解為x=-1,故選A.方法總結(jié):此題主要考查了一次函數(shù)與一元一次方程的關(guān)系,關(guān)鍵是正確利用待定系數(shù)法求出一次函數(shù)的關(guān)系式.三、板書設(shè)計一次函數(shù)的應(yīng)用單個一次函數(shù)圖象的應(yīng)用一次函數(shù)與一元一次方程的關(guān)系探究的過程由淺入深,并利用了豐富的實際情景,增加了學(xué)生的學(xué)習(xí)興趣.教學(xué)中要注意層層遞進,逐步讓學(xué)生掌握求一次函數(shù)與一元一次方程的關(guān)系.教學(xué)中還應(yīng)注意尊重學(xué)生的個體差異,使每個學(xué)生都學(xué)有所獲.

解:設(shè)正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負(fù)半軸上,∴B點的坐標(biāo)為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標(biāo),然后運用待定系數(shù)法將兩點的橫、縱坐標(biāo)代入所設(shè)表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎(chǔ)上加一定利潤,其數(shù)量x與售價y的關(guān)系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關(guān)系式,并求出當(dāng)數(shù)量是2.5千克時的售價.

設(shè)計意圖:題目1是判斷能否折疊形成立體幾何,本題可以研究學(xué)生對常見幾何體的把握是否成熟。題目2是考察正方體的展開圖,一方面可以研究學(xué)生對幾何體的把握,另一方面可以引導(dǎo)學(xué)生思考,引出下面要學(xué)習(xí)的內(nèi)容。)學(xué)生預(yù)設(shè)回答:題目一:學(xué)生應(yīng)該很容易的說出折疊后形成的立體圖形。題目二:①運用動手操作的方法,剪出題目中的圖形,折疊后對題目做出判斷。 ②利用空間觀念,復(fù)原展開圖,發(fā)現(xiàn)6的對面是1,2的對面是4,5的對面是3,進而做出判斷。教師引導(dǎo)語預(yù)設(shè):① 當(dāng)學(xué)生運用動手操作的方法,可以讓學(xué)生動手實踐一下,下一步再引導(dǎo)學(xué)生觀察正方體,發(fā)現(xiàn)規(guī)律。② 當(dāng)學(xué)生運用空間觀念,教師要放慢語調(diào),和學(xué)生一起想象,鍛煉學(xué)生空間想象能力。

(3)設(shè)點A的坐標(biāo)為(m,0),則點B的坐標(biāo)為(12-m,0),點C的坐標(biāo)為(12-m,-16m2+2m),點D的坐標(biāo)為(m,-16m2+2m).∴“支撐架”總長AD+DC+CB=(-16m2+2m)+(12-2m)+(-16m2+2m)=-13m2+2m+12=-13(m-3)2+15.∵此二次函數(shù)的圖象開口向下,∴當(dāng)m=3米時,“支撐架”的總長有最大值為15米.方法總結(jié):解決本題的關(guān)鍵是根據(jù)圖形特點選取一個合適的參數(shù)表示它們,得出關(guān)系式后運用函數(shù)性質(zhì)來解.三、板書設(shè)計二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)1.二次函數(shù)y=a(x-h(huán))2+k的圖象與性質(zhì)2.二次函數(shù)y=a(x-h(huán))2+k的圖象與y=ax2的圖象的關(guān)系3.二次函數(shù)y=a(x-h(huán))2+k的應(yīng)用要使課堂真正成為學(xué)生展示自我的舞臺,還學(xué)生課堂學(xué)習(xí)的主體地位,教師要把激發(fā)學(xué)生學(xué)習(xí)熱情和提高學(xué)生學(xué)習(xí)能力放在教學(xué)首位,為學(xué)生提供展示自己聰明才智的機會,使課堂真正成為學(xué)生展示自我的舞臺.充分利用合作交流的形式,能使教師發(fā)現(xiàn)學(xué)生分析問題、解決問題的獨到見解以及思維的誤區(qū),以便指導(dǎo)今后的教學(xué).

活動內(nèi)容:教師首先讓學(xué)生回顧學(xué)過的三類事件,接著讓學(xué)生拋擲一枚均勻的硬幣,硬幣落下后,會出現(xiàn)正面朝上、正面朝下兩種情況,你認(rèn)為正面朝上和正面朝下的可能性相同嗎?(讓學(xué)生體驗數(shù)學(xué)來源于生活)?;顒幽康模菏箤W(xué)生回顧學(xué)過的三類事件,并由擲硬幣游戲培養(yǎng)學(xué)生猜測游戲結(jié)果的能力,并從中初步體會猜測事件可能性。讓學(xué)生體會猜測結(jié)果,這是很重要的一步,我們所學(xué)到的很多知識,都是先猜測,再經(jīng)過多次的試驗得出來的。而且由此引出猜測是需通過大量的實驗來驗證。這就是我們本節(jié)課要來研究的問題(自然引出課題)。

問題1:你能證明“兩條直線被第三條直線所截,如果內(nèi)錯角相等,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a,b被直線c截出的內(nèi)錯角,且∠1=∠2.求證:a∥b. 問題2:你能證明“兩條直線被第三條直線所截,如果同旁內(nèi)角互補,那么這兩條直線平行”這個命題的正確性嗎?已知:如圖,∠1和∠2是直線a、b被直線c截出的同旁內(nèi)角,且∠1與∠2互補.求證:a∥b

這是本節(jié)課的重點。讓同學(xué)們將∠aob對折,再折出一個直角三角形(使第一條折痕為斜邊),然后展開,請同學(xué)們觀察并思考:后折疊的二條折痕的交點在什么地方?這兩條折痕與角的兩邊有什么位置關(guān)系?這兩條折痕在數(shù)量上有什么關(guān)系?這時有的同學(xué)會說:“角的平分線上的點到角的兩邊的距離相等”.即得到了角平分線的性質(zhì)定理的猜想。接著我會讓同學(xué)們理論證明,并轉(zhuǎn)化為符號語言,注意分清題設(shè)和結(jié)論。有的同學(xué)會用全等三角形的判定定理aas證明,從而證明了猜想得到了角平分線的性質(zhì)定理。

這節(jié)課的教學(xué)內(nèi)容是九年義務(wù)教育六年制小學(xué)教科書數(shù)學(xué)第九冊,P117——P119頁復(fù)習(xí)、例1、例2、解方程的一般步驟、想一想、做一做及P120頁T1-4。教學(xué)目的有以下三點:1、使學(xué)生掌握列方程解兩步應(yīng)用題的方法。2、總結(jié)列方程解應(yīng)用題的一般步驟。3、培養(yǎng)學(xué)生分析數(shù)量關(guān)系的能力,提高學(xué)生在列方程解應(yīng)用題時分析等理關(guān)系的能力。教學(xué)重點:分析應(yīng)用題里的等量關(guān)系,會列方程解應(yīng)用題。教學(xué)難點:分析應(yīng)用題里的等量關(guān)系。教具準(zhǔn)備:小黑板、寫好題目的紙條等。這節(jié)課在學(xué)生已有的解方程、分析應(yīng)用題數(shù)量關(guān)系等知識的基礎(chǔ)上進行教學(xué),使學(xué)生掌握列方程解應(yīng)用題的方法,為以后學(xué)習(xí)更深入的知識打下基礎(chǔ),同時培養(yǎng)學(xué)生積極思考問題,熱愛自然科學(xué)的品質(zhì)。

(1) 你是用什么方法解方程的?要求學(xué)生獨立完成。請一位同學(xué)在黑板上計算。學(xué)生交流:等式的兩邊同時加上同一個數(shù),等式仍然成立。也就是方程 x-9=15的兩邊同時加上9,抵消掉等式左邊的9,這樣等式的左邊只剩下x。(2) 你會檢驗方程的解是否正確嗎?指導(dǎo)學(xué)生把方程的解代入方程進行檢驗。2.出示:64頁第2題的第2小題。提問:你是根據(jù)哪個等量關(guān)系列出方程的?(1) 標(biāo)準(zhǔn)體重+超出標(biāo)準(zhǔn)的重量=胖胖的體重(2) 標(biāo)準(zhǔn)體重-低于標(biāo)準(zhǔn)的重量=小明的體重提問:他們標(biāo)準(zhǔn)體重的計算方法有什么不同?學(xué)生交流:一個是等式兩邊同時減去同一個數(shù),一個是等式兩邊同時加上同一個數(shù)。三、拓寬應(yīng)用。1.解方程:x-5.3=10 75-x=402.65頁第4題提問:你是怎樣選出各方程的解的?把未知數(shù)的值代入方程,看看左右是否相等。3.65頁第5題提示學(xué)生認(rèn)真讀題,注意選擇題中所給出的條件是否有用。

【教學(xué)目標(biāo)】知識與技能目標(biāo):掌握對數(shù)函數(shù)的圖像及性質(zhì);過程與方法目標(biāo):通過圖像特征的觀察,理解對數(shù)函數(shù)的性質(zhì),并從中體會從具體到一般及數(shù)形結(jié)合的方法;情感態(tài)度與價值觀目標(biāo):在教學(xué)活動中培養(yǎng)學(xué)生的學(xué)習(xí)興趣,感受數(shù)學(xué)知識的應(yīng)用價值,體驗知識之間的內(nèi)在邏輯之美?!窘虒W(xué)重點】對數(shù)函數(shù)的圖像及性質(zhì)?!窘虒W(xué)難點】對數(shù)函數(shù)性質(zhì)與應(yīng)用。

二、對數(shù)函數(shù)的概念1. 計算對數(shù)的值 N1248x 思路(引入對數(shù)的概念):讓學(xué)生依次計算、、、、、、,體會每一個真數(shù)都能找到唯一一個對數(shù)與之對應(yīng),這就形成了一個函數(shù),我們稱這個函數(shù)為對數(shù)函數(shù)。

四、教學(xué)設(shè)計反思這節(jié)內(nèi)容是學(xué)生利用數(shù)形結(jié)合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應(yīng)關(guān)系有點陌生.在教學(xué)過程中教師應(yīng)通過情境創(chuàng)設(shè)激發(fā)學(xué)生的學(xué)習(xí)興趣,對函數(shù)與圖象的對應(yīng)關(guān)系應(yīng)讓學(xué)生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應(yīng)讓學(xué)生自己得出.在得出結(jié)論之后,讓學(xué)生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習(xí)活動中,鼓勵學(xué)生積極思考,提高學(xué)生解決實際問題的能力.當(dāng)然,根據(jù)學(xué)生狀況,教學(xué)設(shè)計也應(yīng)做出相應(yīng)的調(diào)整。如第一環(huán)節(jié):創(chuàng)設(shè)情境 引入課題,固然可以激發(fā)學(xué)生興趣,但也可能容易讓學(xué)生關(guān)注代數(shù)表達式的尋求,甚至對部分學(xué)生形成一定的認(rèn)知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應(yīng)的圖形具有什么特征呢?
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。