提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

人教版高中歷史必修2近代中國經(jīng)濟結(jié)構(gòu)的變動說課稿2篇

  • 圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓的一般方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    情境導學前面我們已討論了圓的標準方程為(x-a)2+(y-b)2=r2,現(xiàn)將其展開可得:x2+y2-2ax-2bx+a2+b2-r2=0.可見,任何一個圓的方程都可以變形x2+y2+Dx+Ey+F=0的形式.請大家思考一下,形如x2+y2+Dx+Ey+F=0的方程表示的曲線是不是圓?下面我們來探討這一方面的問題.探究新知例如,對于方程x^2+y^2-2x-4y+6=0,對其進行配方,得〖(x-1)〗^2+(〖y-2)〗^2=-1,因為任意一點的坐標 (x,y) 都不滿足這個方程,所以這個方程不表示任何圖形,所以形如x2+y2+Dx+Ey+F=0的方程不一定能通過恒等變換為圓的標準方程,這表明形如x2+y2+Dx+Ey+F=0的方程不一定是圓的方程.一、圓的一般方程(1)當D2+E2-4F>0時,方程x2+y2+Dx+Ey+F=0表示以(-D/2,-E/2)為圓心,1/2 √(D^2+E^2 "-" 4F)為半徑的圓,將方程x2+y2+Dx+Ey+F=0,配方可得〖(x+D/2)〗^2+(〖y+E/2)〗^2=(D^2+E^2-4F)/4(2)當D2+E2-4F=0時,方程x2+y2+Dx+Ey+F=0,表示一個點(-D/2,-E/2)(3)當D2+E2-4F0);

  • 直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的點斜式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    【答案】B [由直線方程知直線斜率為3,令x=0可得在y軸上的截距為y=-3.故選B.]3.已知直線l1過點P(2,1)且與直線l2:y=x+1垂直,則l1的點斜式方程為________.【答案】y-1=-(x-2) [直線l2的斜率k2=1,故l1的斜率為-1,所以l1的點斜式方程為y-1=-(x-2).]4.已知兩條直線y=ax-2和y=(2-a)x+1互相平行,則a=________. 【答案】1 [由題意得a=2-a,解得a=1.]5.無論k取何值,直線y-2=k(x+1)所過的定點是 . 【答案】(-1,2)6.直線l經(jīng)過點P(3,4),它的傾斜角是直線y=3x+3的傾斜角的2倍,求直線l的點斜式方程.【答案】直線y=3x+3的斜率k=3,則其傾斜角α=60°,所以直線l的傾斜角為120°.以直線l的斜率為k′=tan 120°=-3.所以直線l的點斜式方程為y-4=-3(x-3).

  • 直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的兩點式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:①過原點時,直線方程為y=-34x.②直線不過原點時,可設其方程為xa+ya=1,∴4a+-3a=1,∴a=1.∴直線方程為x+y-1=0.所以這樣的直線有2條,選B.答案:B4.若點P(3,m)在過點A(2,-1),B(-3,4)的直線上,則m= . 解析:由兩點式方程得,過A,B兩點的直線方程為(y"-(-" 1")" )/(4"-(-" 1")" )=(x"-" 2)/("-" 3"-" 2),即x+y-1=0.又點P(3,m)在直線AB上,所以3+m-1=0,得m=-2.答案:-2 5.直線ax+by=1(ab≠0)與兩坐標軸圍成的三角形的面積是 . 解析:直線在兩坐標軸上的截距分別為1/a 與 1/b,所以直線與坐標軸圍成的三角形面積為1/(2"|" ab"|" ).答案:1/(2"|" ab"|" )6.已知三角形的三個頂點A(0,4),B(-2,6),C(-8,0).(1)求三角形三邊所在直線的方程;(2)求AC邊上的垂直平分線的方程.解析(1)直線AB的方程為y-46-4=x-0-2-0,整理得x+y-4=0;直線BC的方程為y-06-0=x+8-2+8,整理得x-y+8=0;由截距式可知,直線AC的方程為x-8+y4=1,整理得x-2y+8=0.(2)線段AC的中點為D(-4,2),直線AC的斜率為12,則AC邊上的垂直平分線的斜率為-2,所以AC邊的垂直平分線的方程為y-2=-2(x+4),整理得2x+y+6=0.

  • 圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    圓與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    1.兩圓x2+y2-1=0和x2+y2-4x+2y-4=0的位置關系是( )A.內(nèi)切 B.相交 C.外切 D.外離解析:圓x2+y2-1=0表示以O1(0,0)點為圓心,以R1=1為半徑的圓.圓x2+y2-4x+2y-4=0表示以O2(2,-1)點為圓心,以R2=3為半徑的圓.∵|O1O2|=√5,∴R2-R1<|O1O2|<R2+R1,∴圓x2+y2-1=0和圓x2+y2-4x+2y-4=0相交.答案:B2.圓C1:x2+y2-12x-2y-13=0和圓C2:x2+y2+12x+16y-25=0的公共弦所在的直線方程是 . 解析:兩圓的方程相減得公共弦所在的直線方程為4x+3y-2=0.答案:4x+3y-2=03.半徑為6的圓與x軸相切,且與圓x2+(y-3)2=1內(nèi)切,則此圓的方程為( )A.(x-4)2+(y-6)2=16 B.(x±4)2+(y-6)2=16C.(x-4)2+(y-6)2=36 D.(x±4)2+(y-6)2=36解析:設所求圓心坐標為(a,b),則|b|=6.由題意,得a2+(b-3)2=(6-1)2=25.若b=6,則a=±4;若b=-6,則a無解.故所求圓方程為(x±4)2+(y-6)2=36.答案:D4.若圓C1:x2+y2=4與圓C2:x2+y2-2ax+a2-1=0內(nèi)切,則a等于 . 解析:圓C1的圓心C1(0,0),半徑r1=2.圓C2可化為(x-a)2+y2=1,即圓心C2(a,0),半徑r2=1,若兩圓內(nèi)切,需|C1C2|=√(a^2+0^2 )=2-1=1.解得a=±1. 答案:±1 5. 已知兩個圓C1:x2+y2=4,C2:x2+y2-2x-4y+4=0,直線l:x+2y=0,求經(jīng)過C1和C2的交點且和l相切的圓的方程.解:設所求圓的方程為x2+y2+4-2x-4y+λ(x2+y2-4)=0,即(1+λ)x2+(1+λ)y2-2x-4y+4(1-λ)=0.所以圓心為 1/(1+λ),2/(1+λ) ,半徑為1/2 √((("-" 2)/(1+λ)) ^2+(("-" 4)/(1+λ)) ^2 "-" 16((1"-" λ)/(1+λ))),即|1/(1+λ)+4/(1+λ)|/√5=1/2 √((4+16"-" 16"(" 1"-" λ^2 ")" )/("(" 1+λ")" ^2 )).解得λ=±1,舍去λ=-1,圓x2+y2=4顯然不符合題意,故所求圓的方程為x2+y2-x-2y=0.

  • 直線與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線與圓的位置關系教學設計人教A版高中數(shù)學選擇性必修第一冊

    切線方程的求法1.求過圓上一點P(x0,y0)的圓的切線方程:先求切點與圓心連線的斜率k,則由垂直關系,切線斜率為-1/k,由點斜式方程可求得切線方程.若k=0或斜率不存在,則由圖形可直接得切線方程為y=b或x=a.2.求過圓外一點P(x0,y0)的圓的切線時,常用幾何方法求解設切線方程為y-y0=k(x-x0),即kx-y-kx0+y0=0,由圓心到直線的距離等于半徑,可求得k,進而切線方程即可求出.但要注意,此時的切線有兩條,若求出的k值只有一個時,則另一條切線的斜率一定不存在,可通過數(shù)形結(jié)合求出.例3 求直線l:3x+y-6=0被圓C:x2+y2-2y-4=0截得的弦長.思路分析:解法一求出直線與圓的交點坐標,解法二利用弦長公式,解法三利用幾何法作出直角三角形,三種解法都可求得弦長.解法一由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤得交點A(1,3),B(2,0),故弦AB的長為|AB|=√("(" 2"-" 1")" ^2+"(" 0"-" 3")" ^2 )=√10.解法二由{■(3x+y"-" 6=0"," @x^2+y^2 "-" 2y"-" 4=0"," )┤消去y,得x2-3x+2=0.設兩交點A,B的坐標分別為A(x1,y1),B(x2,y2),則由根與系數(shù)的關系,得x1+x2=3,x1·x2=2.∴|AB|=√("(" x_2 "-" x_1 ")" ^2+"(" y_2 "-" y_1 ")" ^2 )=√(10"[(" x_1+x_2 ")" ^2 "-" 4x_1 x_2 "]" ┴" " )=√(10×"(" 3^2 "-" 4×2")" )=√10,即弦AB的長為√10.解法三圓C:x2+y2-2y-4=0可化為x2+(y-1)2=5,其圓心坐標(0,1),半徑r=√5,點(0,1)到直線l的距離為d=("|" 3×0+1"-" 6"|" )/√(3^2+1^2 )=√10/2,所以半弦長為("|" AB"|" )/2=√(r^2 "-" d^2 )=√("(" √5 ")" ^2 "-" (√10/2) ^2 )=√10/2,所以弦長|AB|=√10.

  • 直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    直線的一般式方程教學設計人教A版高中數(shù)學選擇性必修第一冊

    解析:當a0時,直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過點(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設所求直線方程為x-2y+c=0,把點(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實數(shù)m的范圍;(2)若該直線的斜率k=1,求實數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 人教版新課標高中地理必修2第四章第三節(jié)傳統(tǒng)工業(yè)區(qū)與新工業(yè)區(qū)教案

    人教版新課標高中地理必修2第四章第三節(jié)傳統(tǒng)工業(yè)區(qū)與新工業(yè)區(qū)教案

    知識目標1.了解傳統(tǒng)工業(yè)區(qū)的分布、條件和工業(yè)部門。2.掌握傳統(tǒng)的魯爾工業(yè)區(qū)優(yōu)越的區(qū)位條件,了解它的衰落原因及其綜合整治途徑。能力目標1.讀圖分析礦產(chǎn)資源與工業(yè)部門之間的聯(lián)系,培養(yǎng)學生的地理思維能力、綜合分析能力,明確工業(yè)生產(chǎn)也應因地制宜。2.聯(lián)系實際,了解當?shù)貍鹘y(tǒng)工業(yè)發(fā)展狀況,為適應當今世界經(jīng)濟發(fā)展狀況,應有哪些改善措施,培養(yǎng)學生的創(chuàng)新能力。德育目標1.通過了解魯爾區(qū)的發(fā)展變化,用發(fā)展的觀點看待傳統(tǒng)工業(yè)區(qū)的改造,適應世界發(fā)展潮流。2.中國已經(jīng)“入世”,我們應用辯證唯物主義觀點分析我國傳統(tǒng)工業(yè)今后遇到的機遇和挑戰(zhàn)。

  • 人教版高中政治必修4真正的哲學都是自己時代精神上的精華精品教案

    人教版高中政治必修4真正的哲學都是自己時代精神上的精華精品教案

    一、教材分析 《真正的哲學都是自己時代精神上的精華》是人教版高中政治必修四第3章第1框的教學內(nèi)容,主要學習哲學與時代的關系。二、教學目標1.知識目標:識記哲學是時代的精神上的精華;理解哲學與時代的關系。2.能力目標:培養(yǎng)學生運用哲學理論觀察、分析、處理社會問題的能力,增強學生的時代感。3.情感、態(tài)度和價值觀目標:培養(yǎng)學生與時俱進的思想品質(zhì),讓學生關注時代、關注現(xiàn)實、關注生活,逐步樹立科學的世界觀、人生觀、價值觀 。三、教學重點難點哲學與時代的關系。四、學情分析本框題的內(nèi)容比較抽象,不易理解,所以講解時需要詳細。教師指導學生借助歷史知識進行理解。五、教學方法1.教師啟發(fā)、引導,學生自主閱讀、思考,討論、交流學習成果。2.學案導學:見后面的學案。3.新授課教學基本環(huán)節(jié):預習檢查、總結(jié)疑惑→情境導入、展示目標→合作探究、精講點撥→反思總結(jié)、當堂檢測→發(fā)導學案、布置預習

  • 拋物線的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    拋物線的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、直線與拋物線的位置關系設直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當Δ>0時,直線與拋物線相交,有兩個交點;當Δ=0時,直線與拋物線相切,有一個切點;當Δ<0時,直線與拋物線相離,沒有公共點.(2)若k=0,直線與拋物線有一個交點,此時直線平行于拋物線的對稱軸或與對稱軸重合.因此直線與拋物線有一個公共點是直線與拋物線相切的必要不充分條件.二、典例解析例5.過拋物線焦點F的直線交拋物線于A、B兩點,通過點A和拋物線頂點的直線交拋物線的準線于點D,求證:直線DB平行于拋物線的對稱軸.【分析】設拋物線的標準方程為:y2=2px(p>0).設A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 雙曲線的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    雙曲線的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標高112.5m,試建立適當?shù)淖鴺讼?,求出此雙曲線的標準方程(精確到1m)解:設雙曲線的標準方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標為塔頂直徑的一半即 ,其縱坐標為塔的總高度與喉部標高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點 到定點 的距離和它到定直線l: 的距離的比是 ,則點 的軌跡方程為?解:設點 ,由題知, ,即 .整理得: .請你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過雙曲線 的右焦點F2,傾斜角為30度的直線交雙曲線于A,B兩點,求|AB|.分析:求弦長問題有兩種方法:法一:如果交點坐標易求,可直接用兩點間距離公式代入求弦長;法二:但有時為了簡化計算,常設而不求,運用韋達定理來處理.解:由雙曲線的方程得,兩焦點分別為F1(-3,0),F2(3,0).因為直線AB的傾斜角是30°,且直線經(jīng)過右焦點F2,所以,直線AB的方程為

  • 橢圓的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    橢圓的簡單幾何性質(zhì)(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    二、典例解析例5. 如圖,一種電影放映燈的反射鏡面是旋轉(zhuǎn)橢圓面(橢圓繞其對稱軸旋轉(zhuǎn)一周形成的曲面)的一部分。過對稱軸的截口 ABC是橢圓的一部分,燈絲位于橢圓的一個焦點F_1上,片門位另一個焦點F_2上,由橢圓一個焦點F_1 發(fā)出的光線,經(jīng)過旋轉(zhuǎn)橢圓面反射后集中到另一個橢圓焦點F_2,已知 〖BC⊥F_1 F〗_2,|F_1 B|=2.8cm, |F_1 F_2 |=4.5cm,試建立適當?shù)钠矫嬷苯亲鴺讼担蠼乜贏BC所在的橢圓方程(精確到0.1cm)典例解析解:建立如圖所示的平面直角坐標系,設所求橢圓方程為x^2/a^2 +y^2/b^2 =1 (a>b>0) 在Rt ΔBF_1 F_2中,|F_2 B|= √(|F_1 B|^2+|F_1 F_2 |^2 )=√(〖2.8〗^2 〖+4.5〗^2 ) 有橢圓的性質(zhì) , |F_1 B|+|F_2 B|=2 a, 所以a=1/2(|F_1 B|+|F_2 B|)=1/2(2.8+√(〖2.8〗^2 〖+4.5〗^2 )) ≈4.1b= √(a^2 〖-c〗^2 ) ≈3.4所以所求橢圓方程為x^2/〖4.1〗^2 +y^2/〖3.4〗^2 =1 利用橢圓的幾何性質(zhì)求標準方程的思路1.利用橢圓的幾何性質(zhì)求橢圓的標準方程時,通常采用待定系數(shù)法,其步驟是:(1)確定焦點位置;(2)設出相應橢圓的標準方程(對于焦點位置不確定的橢圓可能有兩種標準方程);(3)根據(jù)已知條件構(gòu)造關于參數(shù)的關系式,利用方程(組)求參數(shù),列方程(組)時常用的關系式有b2=a2-c2等.

  • 用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    用空間向量研究直線、平面的位置關系(2)教學設計人教A版高中數(shù)學選擇性必修第一冊

    跟蹤訓練1在正方體ABCD-A1B1C1D1中,E為AC的中點.求證:(1)BD1⊥AC;(2)BD1⊥EB1.(2)∵(BD_1 ) ?=(-1,-1,1),(EB_1 ) ?=(1/2 "," 1/2 "," 1),∴(BD_1 ) ?·(EB_1 ) ?=(-1)×1/2+(-1)×1/2+1×1=0,∴(BD_1 ) ?⊥(EB_1 ) ?,∴BD1⊥EB1.證明:以D為原點,DA,DC,DD1所在直線分別為x軸、y軸、z軸,建立如圖所示的空間直角坐標系.設正方體的棱長為1,則B(1,1,0),D1(0,0,1),A(1,0,0),C(0,1,0),E(1/2 "," 1/2 "," 0),B1(1,1,1).(1)∵(BD_1 ) ?=(-1,-1,1),(AC) ?=(-1,1,0),∴(BD_1 ) ?·(AC) ?=(-1)×(-1)+(-1)×1+1×0=0.∴(BD_1 ) ?⊥(AC) ?,∴BD1⊥AC.例2在棱長為1的正方體ABCD-A1B1C1D1中,E,F,M分別為棱AB,BC,B1B的中點.求證:D1M⊥平面EFB1.思路分析一種思路是不建系,利用基向量法證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直,從而根據(jù)線面垂直的判定定理證得結(jié)論;另一種思路是建立空間直角坐標系,通過坐標運算證明(D_1 M) ?與平面EFB1內(nèi)的兩個不共線向量都垂直;還可以在建系的前提下,求得平面EFB1的法向量,然后說明(D_1 M) ?與法向量共線,從而證得結(jié)論.證明:(方法1)因為E,F,M分別為棱AB,BC,B1B的中點,所以(D_1 M) ?=(D_1 B_1 ) ?+(B_1 M) ?=(DA) ?+(DC) ?+1/2 (B_1 B) ?,而(B_1 E) ?=(B_1 B) ?+(BE) ?=(B_1 B) ?-1/2 (DC) ?,于是(D_1 M) ?·(B_1 E) ?=((DA) ?+(DC) ?+1/2 (B_1 B) ?)·((B_1 B) ?-1/2 (DC) ?)=0-0+0-1/2+1/2-1/4×0=0,因此(D_1 M) ?⊥(B_1 E) ?.同理(D_1 M) ?⊥(B_1 F) ?,又因為(B_1 E) ?,(B_1 F) ?不共線,因此D1M⊥平面EFB1.

  • 人教A版高中數(shù)學必修一充分條件與必要條件教學設計(2)

    人教A版高中數(shù)學必修一充分條件與必要條件教學設計(2)

    【例3】本例中“p是q的充分不必要條件”改為“p是q的必要不充分條件”,其他條件不變,試求m的取值范圍.【答案】見解析【解析】由x2-8x-20≤0得-2≤x≤10,由x2-2x+1-m2≤0(m>0)得1-m≤x≤1+m(m>0)因為p是q的必要不充分條件,所以q?p,且p?/q.則{x|1-m≤x≤1+m,m>0}?{x|-2≤x≤10}所以m>01-m≥-21+m≤10,解得0<m≤3.即m的取值范圍是(0,3].解題技巧:(利用充分、必要、充分必要條件的關系求參數(shù)范圍)(1)化簡p、q兩命題,(2)根據(jù)p與q的關系(充分、必要、充要條件)轉(zhuǎn)化為集合間的關系,(3)利用集合間的關系建立不等關系,(4)求解參數(shù)范圍.跟蹤訓練三3.已知P={x|a-4<x<a+4},Q={x|1<x<3},“x∈P”是“x∈Q”的必要條件,求實數(shù)a的取值范圍.【答案】見解析【解析】因為“x∈P”是x∈Q的必要條件,所以Q?P.所以a-4≤1a+4≥3解得-1≤a≤5即a的取值范圍是[-1,5].五、課堂小結(jié)讓學生總結(jié)本節(jié)課所學主要知識及解題技巧

  • 人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    人教A版高中數(shù)學必修一全稱量詞與存在量詞教學設計(2)

    (4)“不論m取何實數(shù),方程x2+2x-m=0都有實數(shù)根”是全稱量詞命題,其否定為“存在實數(shù)m0,使得方程x2+2x-m0=0沒有實數(shù)根”,它是真命題.解題技巧:(含有一個量詞的命題的否定方法)(1)一般地,寫含有一個量詞的命題的否定,首先要明確這個命題是全稱量詞命題還是存在量詞命題,并找到其量詞的位置及相應結(jié)論,然后把命題中的全稱量詞改成存在量詞,存在量詞改成全稱量詞,同時否定結(jié)論.(2)對于省略量詞的命題,應先挖掘命題中隱含的量詞,改寫成含量詞的完整形式,再依據(jù)規(guī)則來寫出命題的否定.跟蹤訓練三3.寫出下列命題的否定,并判斷其真假:(1)p:?x∈R,x2-x+ ≥0;(2)q:所有的正方形都是矩形;(3)r:?x∈R,x2+3x+7≤0;(4)s:至少有一個實數(shù)x,使x3+1=0.【答案】見解析【解析】(1) p:?x∈R,x2-x+1/4<0.∵?x∈R,x2-x+1/4=(x"-" 1/2)^2≥0恒成立,∴ p是假命題.

  • 人教A版高中數(shù)學必修一等式性質(zhì)與不等式性質(zhì)教學設計(2)

    人教A版高中數(shù)學必修一等式性質(zhì)與不等式性質(zhì)教學設計(2)

    等式性質(zhì)與不等式性質(zhì)是高中數(shù)學的主要內(nèi)容之一,在高中數(shù)學中占有重要地位,它是刻畫現(xiàn)實世界中量與量之間關系的有效數(shù)學模型,在現(xiàn)實生活中有著廣泛的應,有著重要的實際意義.同時等式性質(zhì)與不等式性質(zhì)也為學生以后順利學習基本不等式起到重要的鋪墊.課程目標1. 掌握等式性質(zhì)與不等式性質(zhì)以及推論,能夠運用其解決簡單的問題.2. 進一步掌握作差、作商、綜合法等比較法比較實數(shù)的大?。?3. 通過教學培養(yǎng)學生合作交流的意識和大膽猜測、樂于探究的良好思維品質(zhì)。數(shù)學學科素養(yǎng)1.數(shù)學抽象:不等式的基本性質(zhì);2.邏輯推理:不等式的證明;3.數(shù)學運算:比較多項式的大小及重要不等式的應用;4.數(shù)據(jù)分析:多項式的取值范圍,許將單項式的范圍之一求出,然后相加或相乘.(將減法轉(zhuǎn)化為加法,將除法轉(zhuǎn)化為乘法);5.數(shù)學建模:運用類比的思想有等式的基本性質(zhì)猜測不等式的基本性質(zhì)。

  • 人教版高中政治必修3思想道德修養(yǎng)與文化修養(yǎng)教案

    人教版高中政治必修3思想道德修養(yǎng)與文化修養(yǎng)教案

    (2)這樣的例子很多,如,有的同學利用自己掌握的計算機知識制造黑客程序,破壞校園網(wǎng)的正常運行;有的生產(chǎn)者和經(jīng)營者制假售假,坑蒙拐騙;有的人身上存在著拜金主義傾向;等等。從上面的課堂探究中,我們認識到:(1)出現(xiàn)道德沖突的原因:生活變化很快,不斷加快的城鎮(zhèn)化進程;新型產(chǎn)業(yè)的崛起與傳統(tǒng)產(chǎn)業(yè)的衰落,使眾多勞動者不得不面對新的擇業(yè)問題;網(wǎng)絡的普及,使越來越多的人進入社會交行的新天地;等等。在急劇變化的社會生活中,人們在告別傳統(tǒng)?;罘绞降耐瑫r,也常常遭遇思想道德下的“兩難選擇”。(2)解決道德沖突的重要途徑解決道德沖突的一個重要的途徑,就是在社會主義精神文明建設的實踐中,加強自身知識文化修養(yǎng)和思想道德修養(yǎng),不斷追求更高的思想道德目標?!笳n堂練習:道德沖突()①是經(jīng)濟生活日益發(fā)展的反映②不存在于現(xiàn)實生活中③是一個永遠無法解決的問題④是社會生活急劇變化的產(chǎn)物

  • 人教版高中政治必修3思想道德修養(yǎng)和科學文化修養(yǎng)精品教案

    人教版高中政治必修3思想道德修養(yǎng)和科學文化修養(yǎng)精品教案

    一、教材分析《思想道德修養(yǎng)和科學文化修 養(yǎng)》是人教版高中政治必修一《文化生活》第十課第二框題的教學內(nèi)容。主要學評析文化修養(yǎng)與思想道德修養(yǎng)的關系,說明青少年應該不斷地追求更高的思想道德目標。二、教學目標1、知識目標識記:思想道德修養(yǎng)和科學文化修養(yǎng)的含義。理解:思想道德修養(yǎng)和科學文化修養(yǎng)的內(nèi)在聯(lián)系。分析:當代中國青年如何追求更高的思想道德目標。2、能力目標通過對“兩個修養(yǎng)”的學習,提高學生比較分析問題的能力。3、情感、態(tài)度、價值觀目標:通過本課的學習,增強當代中學生自覺提高自身全面素質(zhì)的能力,不斷地追求更高的思想道德目標。三、教學重難點教學重點:理解思想道德修養(yǎng)和科學文化修養(yǎng)的內(nèi)在聯(lián)系。教學難點:歸納如何追求更高的思想道德目標。四、學情分析通過上一框題的學習,學生從宏觀上把握了國家加強思想道德建設的相關內(nèi)容,,本課將從微觀上即從個人的角度重點學習不斷提高思想道德修養(yǎng)和科學文化修養(yǎng)的原因及具體要求。本課內(nèi)容離學生的距離較近,是學 生比較感興趣的。

  • 人教版高中政治必修3弘揚中華民族精神精品教案

    人教版高中政治必修3弘揚中華民族精神精品教案

    9.我們的祖國歷史悠久,文化燦爛。我國是世界著名的四大文明古國之一,有近5000年的文字記載的悠久歷史,我國各民族人民創(chuàng)造了燦爛的古代文化和科學技術。張衡發(fā)明的“渾天儀”、“地動儀”比歐洲早1700多年;祖沖之的“圓周率”推算,比西方世界早了1000多年;華佗的全身麻醉技術也比西方早10000多年;煉鐵技術的發(fā)明比歐洲早1900多年……中國的“四大發(fā)明”更是推動了人類歷史文明的進程。5000多年的歷史造就了中華民族燦爛的文化,涌現(xiàn)出大批偉大的思想家、文學家、藝術家,也出現(xiàn)了一大批優(yōu)秀的藝術作品,這都是先人留給我們的寶貴精神財富。以上材料說明 ( )①中華文化歷史悠久,源遠流長是中華文化的基本特征 ②中華文化博大精深,具有非常豐富的內(nèi)容 ③中華民族對人類世界的發(fā)展做出了巨大的貢獻 ④中華文化曾長期居于世界文化發(fā)展的 前列,是世界上最優(yōu)秀的民族文化之一A. ①② B. ①②③ C. ①②③④ D. ①②④

  • 人教版高中政治必修3在文化生活中選擇精品教案

    人教版高中政治必修3在文化生活中選擇精品教案

    一、教材分析教材使用人教版第三冊第四單元第八課《走進文化生活》第二框“在文化生活中選擇”的內(nèi)容。本框?qū)W習的主要內(nèi)容是如何看待多樣化的精神需求和文化消費;面對 紛繁復雜的文化現(xiàn)象,提高明辨是非的能力,選擇健康有益的文化活動;認識加強社會主義文化建設的重要性。二、教學目標(一)知識目標1、識記落后文化、腐朽文化的涵義;2、理解文化多樣性與倡導主旋律的關系;辨識各種文化現(xiàn)象,3、正確進行文化選擇認識加強社會主義文化建設的重要性。(二)能力目標培養(yǎng)學生感受體驗觀察的能力、搜集處理社會信息的能力、獨立思考的能力、合作學習、溝通的能力、語言表達能力。(三)情感、態(tài)度與價值觀目標通過對本課的學習,使學生堅信只有健康向上的文化,才能對我們的成長起到積極的作用,認識到落后文化和腐朽的文化的危害,并做到自覺抵制落后文化和腐朽文化,從而形成正確的人生觀、價值觀、世界觀。

  • 人教版高中政治必修3文化在交流中傳播精品教案

    人教版高中政治必修3文化在交流中傳播精品教案

    一、教材分析:文化在交流中傳播是文化生活第二單元第三課的教學內(nèi)容,主要學習文化傳播的重要方式和途徑,文化傳播的主要方式及特點,文化多樣性與文化傳播的關系及化交流的相關知識。本節(jié)課內(nèi)容承接第一框文化的多樣性,是對第一框內(nèi)容的深入。二、教學目標:1、知識目標:(1)知道文化傳播的重要方式和途徑;(2)列舉現(xiàn)代文化傳播的主要方式,說出它們各自的特點。2、能力目標:培養(yǎng)學生熟練使用大眾傳媒的能力。3、情感態(tài)度價值觀目標:增強做中外文化交流友好使 者的責任感和使命感。三、教學重點難點:文化交流的重要性及如何加強文化交流。四、學情分析:學生對文化交流這一框的內(nèi)容了解較多,對前兩目的內(nèi)容可以稍加點撥即可,第三目的內(nèi)容可以發(fā)揮學生的積極性和主動性,通過討論的方式深入了解,教師做好總結(jié)。五、教學方法:本課以學案導學為主,輔以案例教學法以及概念、原理教學法。

上一頁123...44454647484950
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。