
③如果某人本月繳所得稅19.2元,那么此人本月工資薪金是多少元?根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式是本節(jié)課的重點(diǎn)加難點(diǎn),所以在解決這一問題時及時引導(dǎo)學(xué)生總結(jié)學(xué)習(xí)體會,教給學(xué)生掌握“從特殊到一般”的認(rèn)識規(guī)律中發(fā)現(xiàn)問題的方法。類比出一次函數(shù)關(guān)系式的一般式的求法,以此突破教學(xué)難點(diǎn)。在學(xué)習(xí)過程中,我巡視并予以個別指導(dǎo),關(guān)注學(xué)生的個體發(fā)展。經(jīng)學(xué)生分析:(1)當(dāng)月收入大于1600元而小于2100元時,y=0.05×(x-1600);(2)當(dāng)x=1760時,y=0.05×(1760-1600)=8(元);(3)設(shè)此人本月工資、薪金是x元,則19.2=0.05×(x-1600) X=1984五.教學(xué)效果課前:通過本節(jié)課的學(xué)習(xí),教學(xué)目標(biāo)應(yīng)該可以基本達(dá)成,學(xué)生能夠理解一次函數(shù)和正比例函數(shù)的概念,以及它們之間的關(guān)系,并能正確識別一次函數(shù)解析式,能根據(jù)所給條件寫出簡單的一次函數(shù)表達(dá)式,且通過本節(jié)課的學(xué)習(xí)學(xué)生的抽象思維能力,數(shù)學(xué)應(yīng)用能力都能有所提升,

(3)在某乒乓球質(zhì)量檢測中,一只乒乓球超出標(biāo)準(zhǔn)質(zhì)量0.02克,記作+0.02克,那么-0.03克表示什么?解:(1)扣20分,記作-20分;(2)沿順時針方向轉(zhuǎn)12圈記作-12圈;(3)-0.03克表示乒乓球的質(zhì)量低于標(biāo)準(zhǔn)質(zhì)量0.03克。4、讓學(xué)生回顧現(xiàn)已學(xué)過的數(shù),將他們進(jìn)行分類,最后教師總結(jié)。(三)課堂練習(xí),及時反饋為了讓更多的學(xué)生參與進(jìn)來,通過練習(xí)鞏固知識發(fā)現(xiàn)不足,教師及時得到反饋,檢查教學(xué)效果,采取相應(yīng)措施,我采用了一下習(xí)題:(電腦演示)在練習(xí)過程中培養(yǎng)學(xué)生養(yǎng)成用所學(xué)知識去思考問題、判斷問題、解決問題的好習(xí)慣。學(xué)生的練習(xí)分出了梯度,讓不同學(xué)生的學(xué)生都有所提高,有助于貫徹因材施教的教學(xué)原則。各組練習(xí)在進(jìn)行中,進(jìn)行后,都要掌握學(xué)生的完成情況,讓學(xué)生舉手,加以統(tǒng)計,及時糾錯及再講解。在學(xué)生回答問題時,我通過語言、目光、動作給予鼓勵與告訴,發(fā)揮評價的增益效應(yīng)。

1.小明調(diào)查了班級里20位同學(xué)本學(xué)期計劃購買課外書的花費(fèi)情況,并將結(jié)果繪制成了下面的統(tǒng)計圖.(1)在這20位同學(xué)中,本學(xué)期計劃購買課外書的花費(fèi)的眾數(shù)是多少?(2)計算這20位同學(xué)計劃購買課外書的平均花費(fèi)是多少?你是怎么計算的?反思?交流*(3)在上面的問題,如果不知道調(diào)查的總?cè)藬?shù),你還能求平均數(shù)嗎?2.某題(滿分為5分)的得分情況如右圖,計算此題得分的眾數(shù)、中位數(shù)和平均數(shù)?;顒?:自主反饋1.下圖反映了初三(1)班、(2)班的體育成績。(1)不用計算,根據(jù)條形統(tǒng)計圖,你能判斷哪個班學(xué)生的體育成績好一些嗎?(2)你能從圖中觀察出各班學(xué)生體育成績等級的“眾數(shù)”嗎?(3)如果依次將不及格、及格、中、良好、優(yōu)秀記為55、65、75、85、95分,分別估算一下,兩個班學(xué)生體育成績的平均值大致是多少?算一算,看看你估計的結(jié)果怎么樣?*(4)初三(1)班學(xué)生體育成績的平均數(shù)、中位數(shù)和眾數(shù)有什么關(guān)系?你能說說其中的理由嗎?

讓學(xué)生先獨(dú)立解決⑴題,再小組交流⑵題的答案,找到解題的方法.2、例2,例3是對平方根概念的鞏固與拓展,在例2中由于學(xué)生還不熟于平方根的表示方法,所以應(yīng)在平方根的概念和±號上加以明確,而例3則要把握平方根概念的本質(zhì),根據(jù)該數(shù)的正負(fù)或0來確定其平方根,這部分內(nèi)容可用板演或展臺展示結(jié)果的方式進(jìn)行,讓學(xué)生獨(dú)立完成,應(yīng)給予恰當(dāng)?shù)脑u價.3、最后,我又設(shè)計了一道辨析題:在做一道求4的平方根的題目時,小明說:“4的平方根是2”,小紅說:“4的平方根是-2”,小強(qiáng)說:“2是4的平方根”小芳說:“-2是4的平方根”,請問他們的說法正確嗎?通過這道題目,使學(xué)生在熟悉平方根概念的基礎(chǔ)上更加深理解,同時對以往五種運(yùn)算中從未出現(xiàn)過的一題兩解的現(xiàn)象作出了解釋,使學(xué)生明白了一種整體與局部的關(guān)系,再一次突出了重點(diǎn).

三、說教法和學(xué)法:1、說教法:本節(jié)課采用幾何畫板與電子白板相結(jié)合的教學(xué)手段,使操作過程形象、直觀呈現(xiàn),以便學(xué)生更好的理解。在教學(xué)過程中,引導(dǎo)學(xué)生去探索,使學(xué)生感受到添加輔助線的數(shù)學(xué)思想,更好地掌握三角形內(nèi)角和定理的證明及簡單的應(yīng)用,2、說學(xué)法:根據(jù)本節(jié)課特點(diǎn)和學(xué)生的實(shí)際,在教學(xué)過程中給學(xué)生足夠的時間認(rèn)真、仔細(xì)地動手書寫證明過程,使學(xué)生的學(xué)習(xí)落到實(shí)處。同時,培養(yǎng)學(xué)生科學(xué)的學(xué)習(xí)方法和自信心。四、說教學(xué)過程設(shè)計教學(xué)過程的設(shè)計有:1、問題引入新課:七年級已經(jīng)學(xué)習(xí)三角形內(nèi)角和定理內(nèi)容。這樣從已經(jīng)學(xué)過的知識引入,符合學(xué)生的認(rèn)知規(guī)律。在拼圖活動中發(fā)展思維的靈活性、創(chuàng)造性,為下一環(huán)節(jié)“說理”證明作好準(zhǔn)備,使學(xué)生體會到數(shù)學(xué)來源于實(shí)踐,同時對新知識的學(xué)習(xí)有了期待。

【設(shè)計意圖】:這一環(huán)節(jié)的設(shè)計主要是為了培養(yǎng)學(xué)生自主學(xué)習(xí)的能力,讓學(xué)生在自學(xué)中初步認(rèn)識概念。通過材料的閱讀,活動的實(shí)踐,讓學(xué)生在自畫、自糾中,加深對概念的理解,培養(yǎng)學(xué)生良好的畫圖習(xí)慣。(三)例題講解學(xué)生活動4:(由于例題都比較簡單,所以讓學(xué)生自己先做,教師巡視指導(dǎo))例1、寫出圖中A、B、C、D、E各點(diǎn)的坐標(biāo)。例2、在直角坐標(biāo)系中,描出下列各點(diǎn):A(4,3), B(-2,3),C(-4,-1),D(2,-2)?!驹O(shè)計意圖】:例1的目的是給出點(diǎn)的位置,寫出點(diǎn)的坐標(biāo)。例2的目的是給出點(diǎn)的坐標(biāo),描出點(diǎn)。學(xué)完概念之后,馬上對概念進(jìn)行應(yīng)用,達(dá)到鞏固的目的。當(dāng)時上課時這2道例題的解答都比較圓滿,絕大部分學(xué)生都能順利做出。

接下來請同學(xué)們改造這五個句子,變成“如果??,那么??”句式,其實(shí)就是一個語文環(huán)節(jié)中的造句,同學(xué)們很活躍,紛紛舉手發(fā)言。課堂檢測練習(xí)我用到的是課本221頁習(xí)題6.2第1、2題,有個別同學(xué)會做錯,做錯點(diǎn)在于對判斷還把握不夠到位,還有少數(shù)同學(xué)對定義與命題的理解產(chǎn)生混亂。據(jù)此,我提出:定義與命題兩個概念該如何區(qū)別?同學(xué)們舉手發(fā)言:定義是一個描述性的概念,而命題是判斷一件事情的句子。還有同學(xué)說道:定義就是一個“??叫??”的句式,命題就是“如果??那么??”的句式。在教學(xué)中,學(xué)生對定義與命題的把握還是比較清楚的。大部分學(xué)生可以口頭完成導(dǎo)學(xué)案設(shè)計的題目。能夠迅速的把一個命題轉(zhuǎn)化成“如果?那么?”的形式.利用疑問句和祈使句的特點(diǎn),判定不是命題的語句.迅速的掌握情況還是比較可以的。

我們遇到的往往就是這樣的方程組,我們要想比較簡捷地把它解出來,就需要轉(zhuǎn)化為同一個未知數(shù)系數(shù)相同或相反的情形,從而用加減消元法,達(dá)到消元的目的.請大家把解答過程寫出來.解:①×3,得:6936xy??,③②×2,得:3486??yx,④③-④,得:2?y.將2?y代入①,得:3?x.根據(jù)上面幾個方程組的解法,請同學(xué)們思考下面兩個問題:(1)加減消元法解二元一次方程組的基本思路是什么?(2)用加減消元法解二元一次方程組的主要步驟有哪些?(由學(xué)生分組討論、總結(jié)并請學(xué)生代表發(fā)言)[師生共析](1)用加減消元法解二元一次方程組的基本思路仍然是“消元”.(2)用加減法解二元一次方程組的一般步驟是:①變形----找出兩個方程中同一個未知數(shù)系數(shù)的絕對值的最小公倍數(shù),然分別在兩個方程的兩邊乘以適當(dāng)?shù)臄?shù),使所找的未知數(shù)的系數(shù)相等或互為相反數(shù).②加減消元,得到一個一元一次方程.③解一元一次方程.

有意義,字母x的取值必須滿足什么條件?設(shè)計意圖:通過例題的講解,使學(xué)生加深對所學(xué)知識的理解,避免一些常見錯誤。而變式練習(xí)設(shè)計,延續(xù)的例題的風(fēng)格,一步一步,步步深入,本節(jié)課的教學(xué)難點(diǎn)就在學(xué)生的操作活動中迎刃而解了。對提高學(xué)生對所學(xué)知識的遷移能力和應(yīng)用意識,激發(fā)好奇心和求知欲起到良好效果。(五)、鞏固運(yùn)用,提高認(rèn)識1、通過基礎(chǔ)訓(xùn)練讓學(xué)生體驗(yàn)學(xué)習(xí)的成就感。2、應(yīng)用拓展:增加難處,再次讓學(xué)生聯(lián)系以前的知識,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識。(六)、總結(jié)評價,質(zhì)疑問難這節(jié)課我們學(xué)習(xí)了什么?設(shè)計意圖:學(xué)生共同總結(jié),互相取長補(bǔ)短,學(xué)生在暢所欲言中對二次根式的認(rèn)知得到進(jìn)一步的鞏固升華。五、板書設(shè)計.采用綱領(lǐng)式的板書,使學(xué)生有“話”可說,有“理”可循,在簡單板書設(shè)計中使學(xué)生體會到數(shù)學(xué)的簡潔美。

學(xué)生以小組為單位,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內(nèi)討論每種方案的路線計算方法,通過具體計算,總結(jié)出最短路線。讓學(xué)生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點(diǎn)連線最短問題,引導(dǎo)學(xué)生體會利用數(shù)學(xué)解決實(shí)際問題的方法:建立數(shù)學(xué)模型,構(gòu)圖,計算.意圖:通過學(xué)生的合作探究,找到解決“螞蟻怎么走最近”的方法,將曲面最短距離問題轉(zhuǎn)化為平面最短距離問題并利用勾股定理求解.在活動中體驗(yàn)數(shù)學(xué)建摸,培養(yǎng)學(xué)生與人合作交流的能力,增強(qiáng)學(xué)生探究能力,操作能力,分析能力,發(fā)展空間觀念.3.突破重點(diǎn)、突破難點(diǎn)的策略在教學(xué)過程中教師應(yīng)通過情景創(chuàng)設(shè),激發(fā)興趣,鼓勵引導(dǎo)學(xué)生經(jīng)歷探索過程,得出結(jié)論,從而發(fā)展學(xué)生的數(shù)學(xué)應(yīng)用能力,提高學(xué)生解決實(shí)際問題的能力.

學(xué)生閱讀教材第4頁正文的文本,結(jié)合課前搜集到的紀(jì)律、道德與法律關(guān)系的相關(guān)資料,先在小組內(nèi)討論:你認(rèn)為違反法律的后果和違反學(xué)校紀(jì)律的后果是一樣的嗎?再小組之間進(jìn)行辯論,教師相機(jī)引導(dǎo)。板書:法律與紀(jì)律、道德等社會規(guī)范不同。設(shè)計意圖:引導(dǎo)學(xué)生理解法律與紀(jì)律、道德等社會規(guī)范不同。環(huán)節(jié)三:課堂小結(jié),內(nèi)化提升學(xué)生談一談學(xué)習(xí)本節(jié)課的收獲,教師相機(jī)引導(dǎo)。設(shè)計意圖:梳理總結(jié)本節(jié)課的主要內(nèi)容,體驗(yàn)收獲與成功的喜悅,內(nèi)化提升認(rèn)識與情感。環(huán)節(jié)四:布置作業(yè),課外延伸生活中,在行使權(quán)利的同時,履行好我們的義務(wù)。設(shè)計意圖:將課堂所學(xué)延伸到學(xué)生的日常生活中,有利于落實(shí)行為實(shí)踐。六、板書設(shè)計為了突出重點(diǎn),讓學(xué)生整體上感知本節(jié)課的主要內(nèi)容,我將以思維導(dǎo)圖的形式設(shè)計板書:在黑板中上方的中間位置是課題《感受生活中的法律》,下面是:法律是什么;學(xué)生說到的權(quán)利和義務(wù);法律與紀(jì)律、道德等社會規(guī)范不同。

解:設(shè)個位數(shù)字為x,則十位數(shù)字為14-x,兩數(shù)字之積為x(14-x),兩個數(shù)字交換位置后的新兩位數(shù)為10x+(14-x).根據(jù)題意,得10x+(14-x)-x(14-x)=38.整理,得x2-5x-24=0,解得x1=8,x2=-3.因?yàn)閭€位數(shù)上的數(shù)字不可能是負(fù)數(shù),所以x=-3應(yīng)舍去.當(dāng)x=8時,14-x=6.所以這個兩位數(shù)是68.方法總結(jié):(1)數(shù)字排列問題常采用間接設(shè)未知數(shù)的方法求解.(2)注意數(shù)字只有0,1,2,3,4,5,6,7,8,9這10個,且最高位上的數(shù)字不能為0,而其他如分?jǐn)?shù)、負(fù)數(shù)根不符合實(shí)際意義,必須舍去.三、板書設(shè)計幾何問題及數(shù)字問題幾何問題面積問題動點(diǎn)問題數(shù)字問題經(jīng)歷分析具體問題中的數(shù)量關(guān)系,建立方程模型解決問題的過程,認(rèn)識方程模型的重要性.通過列方程解應(yīng)用題,進(jìn)一步提高邏輯思維能力和分析問題、解決問題的能力.經(jīng)歷探索過程,培養(yǎng)合作學(xué)習(xí)的意識.體會數(shù)學(xué)與實(shí)際生活的聯(lián)系,進(jìn)一步感知方程的應(yīng)用價值.

三、課后自測:1、如圖,A、B、C、D為矩形的四個頂點(diǎn),AB=16cm,BC= 6cm,動點(diǎn)P、 Q分別從點(diǎn)A、C出發(fā),點(diǎn)P以3cm/s的速度向點(diǎn)B移動,一直到達(dá)B為止;點(diǎn)Q以2cm/s的速度向點(diǎn)D移動。經(jīng)過多長時間P、Q兩點(diǎn)之間的距離是10cm?2、如圖,在Rt △ABC中,AB=BC=12cm,點(diǎn)D從點(diǎn)A開始沿邊AB以2cm/s的速度向點(diǎn)B移動,移 動過程中始終保持DE∥BC,DF∥AC,問點(diǎn)D出發(fā)幾秒后四邊形DFCE的面積為20cm2?3、如圖所示,人民海關(guān)緝私巡邏艇在東海海域執(zhí)行巡邏任務(wù)時,發(fā)現(xiàn)在其所處的位置 O點(diǎn)的正北方向10海里外的A點(diǎn)有一涉嫌走私船只正以24海里/時的速度向正東方向航行,為迅速實(shí)施檢查,巡邏艇調(diào)整好航向,以26海里/時的速度追趕。在涉嫌船只不改變航向和航速的前提下,問需要幾小時才 能追上( 點(diǎn)B為追上時的位置)?

四.知識梳理談?wù)動靡辉畏匠探鉀Q例1實(shí)際問題的方法。五、目標(biāo)檢測設(shè)計1.如圖,寬為50cm的矩形圖案由10個全等的小長方形拼成,則每個小長方形的面積為( ).【設(shè)計意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長40米、寬20米的長方形空地上計劃新建一塊長9米、寬7米的長方形花圃.(1)若請你在這塊空地上設(shè)計一個長方形花圃,使它的面積比學(xué)校計劃新建的長方形花圃的面積多1平方米,請你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計劃新建的長方形花圃周長不變的情況下,長方形花圃的面積能否增加2平方米?如果能,請求出長方形花圃的長和寬;如果不能,請說明理由.【設(shè)計意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡單的圖形面積問題.

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒有實(shí)數(shù)根.方法總結(jié):解一元二次方程時,若沒有具體的要求,應(yīng)盡量選擇最簡便的方法去解,能用因式分解法或直接開平方法的選用因式分解法或直接開平方法;若不能用上述方法,可用公式法求解.在用公式法時,要先計算b2-4ac的值,若b2-4ac<0,則判斷原方程沒有實(shí)數(shù)根.沒有特殊要求時,一般不用配方法.

∴此方程無解.∴兩個正方形的面積之和不可能等于12cm2.方法總結(jié):對于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問題的要求,確定用哪些數(shù)學(xué)知識和方法解決,如本題用方程思想和一元二次方程的根的判定方法來解決.三、板書設(shè)計列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個步驟:(1)審:審題要弄清已知量和未知量,問題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問題的過程,體會一元二次方程是刻畫現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個有效數(shù)學(xué)模型.通過學(xué)生創(chuàng)設(shè)解決問題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識和能力.

(1) 你能解哪些特殊的一元二次方程?(2) 你會解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒佣鹤鲆蛔觯禾钌线m當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動三:例1、解方程:x2+8x-9=0你能用語言總結(jié)配方法嗎?課本37頁隨堂練習(xí)課時作業(yè):

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過程與方法:因式分解法是把一個一元二次方程化為兩個一元一次方程來解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

5.一件上衣原價每件500元,第一次降價后,銷售甚慢,第二次大幅度降價的百分率是第一次的2 倍,結(jié)果以每件240元的價格迅速出售,求每次降價的百分率是多少?6.水果店花1500元進(jìn)了一批水果,按50%的利潤定價,無人購買.決定打折出售,但仍無人購買,結(jié)果又一次打折后才售完.經(jīng)結(jié)算,這批水果共盈利500元.若兩次打折相同,每次打了幾折?(精確到0.1折)7.某服裝廠為學(xué)校藝術(shù)團(tuán)生產(chǎn)一批演出服,總成本3000元,售價每套30元.有24名家庭貧困學(xué)生免費(fèi)供應(yīng).經(jīng)核算,這24套演出服的成本正好是原定生產(chǎn)這批演出服的利潤.這批演出服共生產(chǎn)了多少套?8、某商店經(jīng)營T恤衫,已知成批購進(jìn)時單價是2.5元。根據(jù)市場調(diào)查,銷售量與銷售單價滿足如下關(guān)系:在一段時間內(nèi),單價是13.5元時,銷售量是500件,而單價每降低1元,就可以多售200件。請你幫助分析,銷售單價是多少時 ,可以獲利9100元?
PPT全稱是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。