提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

小學美術(shù)桂美版三年級上冊《第12課小掛飾1》教學設(shè)計說課稿

  • 《珍愛生命遠離毒品》教學設(shè)計教案

    《珍愛生命遠離毒品》教學設(shè)計教案

    教學目標:1、使學生了解什么是毒品,毒品的種類,認識吸毒行為,認清毒品的危害性。2、通過圖文、吸毒而造成的悲慘事件,教育學生自覺遠離毒品,提高拒毒防毒意識和能力。3、讓學生認識吸毒成癮的途徑;認識吸毒成癮的原因,如何預(yù)防。懂得“珍愛生命,拒絕毒品”,培養(yǎng)禁毒意識,遵紀守法,抵制毒品,增強與毒品違法犯罪作斗爭的自覺性。教學重點:知道什么是毒品,吸毒的危害,如何提高抵制毒品的能力。

  • 數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學設(shè)計

    數(shù)據(jù)的收集與整理 3 數(shù)據(jù)的表示教案教學設(shè)計

    創(chuàng)設(shè)情境,導入新課:你對母親知多少師問1:我們5月份剛過了一個重要的節(jié)日,你知道是什么嗎?----母親節(jié)。師問2:那你知道媽媽的生日嗎?(舉手示意),每個媽媽都知道自己孩子的生日,請不知道的同學回家了解一下,多關(guān)心一下自己的父母。師問3:那你知道媽媽最愛吃的菜嗎?你可以選擇知道、不知道或者是沒有愛吃的(拖動白板上相對應(yīng)的表情符號)。請大家用不同的手勢表示出來。我找3名同學統(tǒng)計各組的數(shù)據(jù),寫在黑板上(隨機找3名學生數(shù)人數(shù))。下面我來隨機采訪一下:你媽媽最喜歡吃的菜是什么?(教師隨機采訪,結(jié)合營養(yǎng)搭配和感恩教育)

  • 初中語文??汲R姷膭e詞、別字教案教學設(shè)計

    初中語文常考常見的別詞、別字教案教學設(shè)計

    1、三年的汗水,終于有了回報。站在領(lǐng)獎臺上,她興奮得不能自己,淚水刷刷地流了下來。誤:不能自己  正:不能自已[bù néng zì yǐ] 2、燈光下面,人頭攢動。這條街上陳列的,其實大都是膺品,但還是熱鬧非凡。誤:膺品  正:贗品[yàn pǐn]3、待學生從農(nóng)村基地回來時,校舍已修茸一新,三幢大樓披上了節(jié)日的盛裝。誤:修茸  正:修葺[xiū qì] 4、埋伏在左側(cè)的三連,聽到?jīng)_鋒號響,尤如猛虎下山,直撲敵人陣地。誤:尤如猛虎下山  正:猶如猛虎下山[yóu rú] 5、粗制濫造,哄抬市價,這種竭澤而魚的做法,最后必然會讓自己受到懲罰。誤:竭澤而魚  正:竭澤而漁[jié zé ér yú] 6、自從鋼琴熱掀起后,鋼琴教師身價倍增,一批“三腳貓”也混跡其中,濫芋充數(shù)。誤:濫芋充數(shù)  正:濫竽充數(shù)[làn yú chōng shù] 7、陽光穿射而入,配著店堂排列得整整齊齊的書架,真是一個書香花香陽光普照的世外桃園。誤:世外桃園  正:世外桃源[shì wài táo yuán]8、在調(diào)查過程中,陳又將大批贓款轉(zhuǎn)移至岳父處,專案組找他談話時,他依舊裝得若無其事。誤:臟款  正:贓款[zāng kuǎn]

  • 人教版新課標小學數(shù)學二年級上冊美麗的圖形(軸對稱) 說課稿2篇

    人教版新課標小學數(shù)學二年級上冊美麗的圖形(軸對稱) 說課稿2篇

    2.能力目標:在活動中培養(yǎng)學生從具體到抽象,再從抽象回到具體的思維方法。培養(yǎng)觀察、操作、表達、思維能力與探索意識,發(fā)揮學生的想像力、創(chuàng)造力,激發(fā)學生的審美觀點,培養(yǎng)學生創(chuàng)造美的能力。3.情感目標:讓學生在實際操作活動中體驗學習數(shù)學的樂趣,鼓勵他們感受美、欣賞美、創(chuàng)造美,感悟數(shù)學知識的魅力,激發(fā)學生學好數(shù)學的欲望。教學重點:認識軸對稱圖形的基本特征,dj舞曲,會找對稱軸。三、教法學法1、在教法上,為了將課堂還給學生,讓課堂散發(fā)生活活力,營造學生在教學活動中獨立自主的學習時間和空間,使他們成為課堂教學過程中的參與者和創(chuàng)造者,本著這樣的知道思想,本節(jié)課我采用了多種教學方法相結(jié)合的方式,如:情境教學法、觀察比較法、引探教學法、遷移類推法等。通過教師適時的"引"來激發(fā)學生主動的"探",通過教師恰如其分的"放"來指導學生獨立自主的"學",使師聲雙邊產(chǎn)生共鳴和諧發(fā)展!

  • 小學數(shù)學蘇教版六年級下冊《第六單元第三課反比例關(guān)系、反比例量》教學設(shè)計說課稿

    小學數(shù)學蘇教版六年級下冊《第六單元第三課反比例關(guān)系、反比例量》教學設(shè)計說課稿

    提問:1.怎樣判斷兩種相關(guān)聯(lián)的量是否成正比例?用字母怎樣表示正比例關(guān)系? 2.判斷下面兩種量是否成正比例?為什么? (1)時間一定,行駛的路程和速度 (2)除數(shù)一定,被除數(shù)和商 3.單價、數(shù)量和總價之間有怎樣的關(guān)系?在什么條件下,兩種量成正比例? 4.導入新課: 如果總價一定,單價和數(shù)量的變化有什么規(guī)律?這兩種量存在什么關(guān)系?今天,我們就來研究這種變化規(guī)律。

  • 三年級語文賣火柴的小女孩教案

    三年級語文賣火柴的小女孩教案

    《賣火柴的小女孩》統(tǒng)編教材三年級上冊第三單元的第一篇精讀課文,是丹麥作家安徒生的著名童話。講述了在下著大雪的大年夜,一個為了生活被迫賣火柴的小女孩凍死街頭的故事。表達了作者對當時黑暗社會的痛恨,對貧苦人民的深切同情。文章虛實交替,美麗的幻象和殘酷的現(xiàn)實更迭出現(xiàn),是這篇童話的特點。本文原是人教版六年級下冊第四單元“學習外國名篇名著”中的一篇文章,旨在引導學生感知外國作品的特點,理解含義深刻的句子,感受賣火柴的小女孩悲慘的命運,體會作者表達的思想感情。統(tǒng)編教材將文章編排在三年級,“感受童話豐富的想象”為本單元的語文要素,旨在引導學生發(fā)現(xiàn)幻象與愿望之間的關(guān)系,感受童話豐富的想象,幫助學生建立對童話體裁的初步認識。

  • 人教A版高中數(shù)學必修二總體離散程度的估計教學設(shè)計

    人教A版高中數(shù)學必修二總體離散程度的估計教學設(shè)計

    問題二:上述問題中,甲、乙的平均數(shù)、中位數(shù)、眾數(shù)相同,但二者的射擊成績存在差異,那么,如何度量這種差異呢?我們可以利用極差進行度量。根據(jù)上述數(shù)據(jù)計算得:甲的極差=10-4=6 乙的極差=9-5=4極差在一定程度上刻畫了數(shù)據(jù)的離散程度。由極差發(fā)現(xiàn)甲的成績波動范圍比乙的大。但由于極差只使用了數(shù)據(jù)中最大、最小兩個值的信息,所含的信息量很少。也就是說,極差度量出的差異誤差較大。問題三:你還能想出其他刻畫數(shù)據(jù)離散程度的辦法嗎?我們知道,如果射擊的成績很穩(wěn)定,那么大多數(shù)的射擊成績離平均成績不會太遠;相反,如果射擊的成績波動幅度很大,那么大多數(shù)的射擊成績離平均成績會比較遠。因此,我們可以通過這兩組射擊成績與它們的平均成績的“平均距離”來度量成績的波動幅度。

  • 人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設(shè)計

    人教A版高中數(shù)學必修二總體取值規(guī)律的估計教學設(shè)計

    可以通過下面的步驟計算一組n個數(shù)據(jù)的第p百分位數(shù):第一步:按從小到大排列原始數(shù)據(jù);第二步:計算i=n×p%;第三步:若i不是整數(shù),而大于i的比鄰整數(shù)位j,則第p百分位數(shù)為第j項數(shù)據(jù);若i是整數(shù),則第p百分位數(shù)為第i項與第i+1項的平均數(shù)。我們在初中學過的中位數(shù),相當于是第50百分位數(shù)。在實際應(yīng)用中,除了中位數(shù)外,常用的分位數(shù)還有第25百分位數(shù),第75百分位數(shù)。這三個分位數(shù)把一組由小到大排列后的數(shù)據(jù)分成四等份,因此稱為四分位數(shù)。其中第25百分位數(shù)也稱為第一四分位數(shù)或下四分位數(shù)等,第75百分位數(shù)也稱為第三四分位數(shù)或上四分位數(shù)等。另外,像第1百分位數(shù),第5百分位數(shù),第95百分位數(shù),和第99百分位數(shù)在統(tǒng)計中也經(jīng)常被使用。例2、根據(jù)下列樣本數(shù)據(jù),估計樹人中學高一年級女生第25,50,75百分位數(shù)。

  • 人教A版高中數(shù)學必修二總體集中趨勢的估計教學設(shè)計

    人教A版高中數(shù)學必修二總體集中趨勢的估計教學設(shè)計

    (2)平均數(shù)受數(shù)據(jù)中的極端值(2個95)影響較大,使平均數(shù)在估計總體時可靠性降低,10天的用水量有8天都在平均值以下。故用中位數(shù)來估計每天的用水量更合適。1、樣本的數(shù)字特征:眾數(shù)、中位數(shù)和平均數(shù);2、用樣本頻率分布直方圖估計樣本的眾數(shù)、中位數(shù)、平均數(shù)。(1)眾數(shù)規(guī)定為頻率分布直方圖中最高矩形下端的中點;(2)中位數(shù)兩邊的直方圖的面積相等;(3)頻率分布直方圖中每個小矩形的面積與小矩形底邊中點的橫坐標之積相加,就是樣本數(shù)據(jù)的估值平均數(shù)。學生回顧本節(jié)課知識點,教師補充。 讓學生掌握本節(jié)課知識點,并能夠靈活運用。

  • 初中數(shù)學人教版二元一次方程組教學設(shè)計教案

    初中數(shù)學人教版二元一次方程組教學設(shè)計教案

    (一)例題引入籃球聯(lián)賽中,每場比賽都要分出勝負,每隊勝1場得2分,負1場得1分。某隊在10場比賽中得到16分,那么這個隊勝負場數(shù)分別是多少?方法一:(利用之前的知識,學生自己列出并求解)解:設(shè)剩X場,則負(10-X)場。方程:2X+(10-X)=16方法二:(老師帶領(lǐng)學生一起列出方程組)解:設(shè)勝X場,負Y場。根據(jù):勝的場數(shù)+負的場數(shù)=總場數(shù) 勝場積分+負場積分=總積分得到:X+Y=10 2X+Y=16

  • 【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:1.2《正弦型函數(shù)》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.2正弦型函數(shù). *創(chuàng)設(shè)情境 興趣導入 與正弦函數(shù)圖像的做法類似,可以用“五點法”作出正弦型函數(shù)的圖像.正弦型函數(shù)的圖像叫做正弦型曲線. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 學生自然的走向知識點 0 5*鞏固知識 典型例題 例3 作出函數(shù)在一個周期內(nèi)的簡圖. 分析 函數(shù)與函數(shù)的周期都是,最大值都是2,最小值都是-2. 解 為求出圖像上五個關(guān)鍵點的橫坐標,分別令,,,,,求出對應(yīng)的值與函數(shù)的值,列表1-1如下: 表 001000200 以表中每組的值為坐標,描出對應(yīng)五個關(guān)鍵點(,0)、(,2)、(,0)、(,?2)、(,0).用光滑的曲線聯(lián)結(jié)各點,得到函數(shù)在一個周期內(nèi)的圖像(如圖). 圖 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學生 是否 理解 知識 點 15

  • 【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:1.3《正弦定理與余弦定理》教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 1.3正弦定理與余弦定理. *創(chuàng)設(shè)情境 興趣導入 在實際問題中,經(jīng)常需要計算高度、長度、距離和角的大小,這類問題中有許多與三角形有關(guān),可以歸結(jié)為解三角形問題,經(jīng)常需要應(yīng)用正弦定理或余弦定理. 介紹 播放 課件 了解 觀看 課件 學生自然的走向知識點 0 5*鞏固知識 典型例題 例6一艘船以每小時36海里的速度向正北方向航行(如圖1-14).在A處觀察燈塔C在船的北偏東30°,0.5小時后船行駛到B處,再觀察燈塔C在船的北偏東45°,求B處和燈塔C的距離(精確到0.1海里). 解 因為∠NBC=45°,A=30°,所以C=15°, AB = 36×0.5 = 18 (海里). 由正弦定理得 答:B處離燈塔約為34.8海里. 例7 修筑道路需挖掘隧道,在山的兩側(cè)是隧道口A和B(圖1-15),在平地上選擇適合測量的點C,如果C=60°,AB = 350m,BC = 450m,試計算隧道AB的長度(精確到1m). 解 在△ABC中,由余弦定理知 =167500. 所以AB≈409m. 答:隧道AB的長度約為409m. 圖1-15 引領(lǐng) 講解 說明 引領(lǐng) 觀察 思考 主動 求解 觀察 通過 例題 進一 步領(lǐng) 會 注意 觀察 學生 是否 理解 知識 點 40

  • 【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.1《排列與組合》優(yōu)秀教學設(shè)計

    教 學 過 程教師 行為學生 行為教學 意圖時間 *揭示課題 3.1 排列與組合. *創(chuàng)設(shè)情境 興趣導入 基礎(chǔ)模塊中,曾經(jīng)學習了兩個計數(shù)原理.大家知道: (1)如果完成一件事,有N類方式.第一類方式有k1種方法,第二類方式有k2種方法,……,第n類方式有kn種方法,那么完成這件事的方法共有 = + +…+(種). (3.1) (2)如果完成一件事,需要分成N個步驟.完成第1個步驟有k1種方法,完成第2個步驟有k2種方法,……,完成第n個步驟有kn種方法,并且只有這n個步驟都完成后,這件事才能完成,那么完成這件事的方法共有 = · ·…·(種). (3.2) 下面看一個問題: 在北京、重慶、上海3個民航站之間的直達航線,需要準備多少種不同的機票? 這個問題就是從北京、重慶、上海3個民航站中,每次取出2個站,按照起點在前,終點在后的順序排列,求不同的排列方法的總數(shù). 首先確定機票的起點,從3個民航站中任意選取1個,有3種不同的方法;然后確定機票的終點,從剩余的2個民航站中任意選取1個,有2種不同的方法.根據(jù)分步計數(shù)原理,共有3×2=6種不同的方法,即需要準備6種不同的飛機票: 北京→重慶,北京→上海,重慶→北京,重慶→上海,上?!本虾!貞c. 介紹 播放 課件 質(zhì)疑 了解 觀看 課件 思考 引導 啟發(fā)學生得出結(jié)果 0 15*動腦思考 探索新知 我們將被取的對象(如上面問題中的民航站)叫做元素,上面的問題就是:從3個不同元素中,任取2個,按照一定的順序排成一列,可以得到多少種不同的排列. 一般地,從n個不同元素中,任取m (m≤n)個元素,按照一定的順序排成一列,叫做從n個不同元素中取出m個元素的一個排列,時叫做選排列,時叫做全排列. 總結(jié) 歸納 分析 關(guān)鍵 詞語 思考 理解 記憶 引導學生發(fā)現(xiàn)解決問題方法 20

  • 【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.2《二項式定理》教學設(shè)計

    一、定義:  ,這一公式表示的定理叫做二項式定理,其中公式右邊的多項式叫做的二項展開式;上述二項展開式中各項的系數(shù) 叫做二項式系數(shù),第項叫做二項展開式的通項,用表示;叫做二項展開式的通項公式.二、二項展開式的特點與功能1. 二項展開式的特點項數(shù):二項展開式共(二項式的指數(shù)+1)項;指數(shù):二項展開式各項的第一字母依次降冪(其冪指數(shù)等于相應(yīng)二項式系數(shù)的下標與上標的差),第二字母依次升冪(其冪指數(shù)等于二項式系數(shù)的上標),并且每一項中兩個字母的系數(shù)之和均等于二項式的指數(shù);系數(shù):各項的二項式系數(shù)下標等于二項式指數(shù);上標等于該項的項數(shù)減去1(或等于第二字母的冪指數(shù);2. 二項展開式的功能注意到二項展開式的各項均含有不同的組合數(shù),若賦予a,b不同的取值,則二項式展開式演變成一個組合恒等式.因此,揭示二項式定理的恒等式為組合恒等式的“母函數(shù)”,它是解決組合多項式問題的原始依據(jù).又注意到在的二項展開式中,若將各項中組合數(shù)以外的因子視為這一組合數(shù)的系數(shù),則易見展開式中各組合數(shù)的系數(shù)依次成等比數(shù)列.因此,解決組合數(shù)的系數(shù)依次成等比數(shù)列的求值或證明問題,二項式公式也是不可或缺的理論依據(jù).

  • 【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設(shè)計

    【高教版】中職數(shù)學拓展模塊:3.3《離散型隨機變量及其分布》教學設(shè)計

    重點分析:本節(jié)課的重點是離散型隨機變量的概率分布,難點是理解離散型隨機變量的概念. 離散型隨機變量 突破難點的方法: 函數(shù)的自變量 隨機變量 連續(xù)型隨機變量 函數(shù)可以列表 X123456p 2 4 6 8 10 12

  • 人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設(shè)計

    人教版高中數(shù)學選擇性必修二導數(shù)的四則運算法則教學設(shè)計

    求函數(shù)的導數(shù)的策略(1)先區(qū)分函數(shù)的運算特點,即函數(shù)的和、差、積、商,再根據(jù)導數(shù)的運算法則求導數(shù);(2)對于三個以上函數(shù)的積、商的導數(shù),依次轉(zhuǎn)化為“兩個”函數(shù)的積、商的導數(shù)計算.跟蹤訓練1 求下列函數(shù)的導數(shù):(1)y=x2+log3x; (2)y=x3·ex; (3)y=cos xx.[解] (1)y′=(x2+log3x)′=(x2)′+(log3x)′=2x+1xln 3.(2)y′=(x3·ex)′=(x3)′·ex+x3·(ex)′=3x2·ex+x3·ex=ex(x3+3x2).(3)y′=cos xx′=?cos x?′·x-cos x·?x?′x2=-x·sin x-cos xx2=-xsin x+cos xx2.跟蹤訓練2 求下列函數(shù)的導數(shù)(1)y=tan x; (2)y=2sin x2cos x2解析:(1)y=tan x=sin xcos x,故y′=?sin x?′cos x-?cos x?′sin x?cos x?2=cos2x+sin2xcos2x=1cos2x.(2)y=2sin x2cos x2=sin x,故y′=cos x.例5 日常生活中的飲用水通常是經(jīng)過凈化的,隨著水的純凈度的提高,所需進化費用不斷增加,已知將1t水進化到純凈度為x%所需費用(單位:元),為c(x)=5284/(100-x) (80<x<100)求進化到下列純凈度時,所需進化費用的瞬時變化率:(1) 90% ;(2) 98%解:凈化費用的瞬時變化率就是凈化費用函數(shù)的導數(shù);c^' (x)=〖(5284/(100-x))〗^'=(5284^’×(100-x)-"5284 " 〖(100-x)〗^’)/〖(100-x)〗^2 =(0×(100-x)-"5284 " ×(-1))/〖(100-x)〗^2 ="5284 " /〖(100-x)〗^2

  • 人教版高中數(shù)學選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學設(shè)計

    人教版高中數(shù)學選修3成對數(shù)據(jù)的相關(guān)關(guān)系教學設(shè)計

    由樣本相關(guān)系數(shù)??≈0.97,可以推斷脂肪含量和年齡這兩個變量正線性相關(guān),且相關(guān)程度很強。脂肪含量與年齡變化趨勢相同.歸納總結(jié)1.線性相關(guān)系數(shù)是從數(shù)值上來判斷變量間的線性相關(guān)程度,是定量的方法.與散點圖相比較,線性相關(guān)系數(shù)要精細得多,需要注意的是線性相關(guān)系數(shù)r的絕對值小,只是說明線性相關(guān)程度低,但不一定不相關(guān),可能是非線性相關(guān).2.利用相關(guān)系數(shù)r來檢驗線性相關(guān)顯著性水平時,通常與0.75作比較,若|r|>0.75,則線性相關(guān)較為顯著,否則不顯著.例2. 有人收集了某城市居民年收入(所有居民在一年內(nèi)收入的總和)與A商品銷售額的10年數(shù)據(jù),如表所示.畫出散點圖,判斷成對樣本數(shù)據(jù)是否線性相關(guān),并通過樣本相關(guān)系數(shù)推斷居民年收入與A商品銷售額的相關(guān)程度和變化趨勢的異同.

  • 人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設(shè)計

    人教版高中數(shù)學選擇性必修二導數(shù)的概念及其幾何意義教學設(shè)計

    新知探究前面我們研究了兩類變化率問題:一類是物理學中的問題,涉及平均速度和瞬時速度;另一類是幾何學中的問題,涉及割線斜率和切線斜率。這兩類問題來自不同的學科領(lǐng)域,但在解決問題時,都采用了由“平均變化率”逼近“瞬時變化率”的思想方法;問題的答案也是一樣的表示形式。下面我們用上述思想方法研究更一般的問題。探究1: 對于函數(shù)y=f(x) ,設(shè)自變量x從x_0變化到x_0+ ?x ,相應(yīng)地,函數(shù)值y就從f(x_0)變化到f(〖x+x〗_0) 。這時, x的變化量為?x,y的變化量為?y=f(x_0+?x)-f(x_0)我們把比值?y/?x,即?y/?x=(f(x_0+?x)-f(x_0)" " )/?x叫做函數(shù)從x_0到x_0+?x的平均變化率。1.導數(shù)的概念如果當Δx→0時,平均變化率ΔyΔx無限趨近于一個確定的值,即ΔyΔx有極限,則稱y=f (x)在x=x0處____,并把這個________叫做y=f (x)在x=x0處的導數(shù)(也稱為__________),記作f ′(x0)或________,即

  • 人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設(shè)計

    人教版高中數(shù)學選擇性必修二等比數(shù)列的概念 (2) 教學設(shè)計

    二、典例解析例4. 用 10 000元購買某個理財產(chǎn)品一年.(1)若以月利率0.400%的復(fù)利計息,12個月能獲得多少利息(精確到1元)?(2)若以季度復(fù)利計息,存4個季度,則當每季度利率為多少時,按季結(jié)算的利息不少于按月結(jié)算的利息(精確到10^(-5))?分析:復(fù)利是指把前一期的利息與本金之和算作本金,再計算下一期的利息.所以若原始本金為a元,每期的利率為r ,則從第一期開始,各期的本利和a , a(1+r),a(1+r)^2…構(gòu)成等比數(shù)列.解:(1)設(shè)這筆錢存 n 個月以后的本利和組成一個數(shù)列{a_n },則{a_n }是等比數(shù)列,首項a_1=10^4 (1+0.400%),公比 q=1+0.400%,所以a_12=a_1 q^11 〖=10〗^4 (1+0.400%)^12≈10 490.7.所以,12個月后的利息為10 490.7-10^4≈491(元).解:(2)設(shè)季度利率為 r ,這筆錢存 n 個季度以后的本利和組成一個數(shù)列{b_n },則{b_n }也是一個等比數(shù)列,首項 b_1=10^4 (1+r),公比為1+r,于是 b_4=10^4 (1+r)^4.

  • 人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設(shè)計

    人教版高中數(shù)學選擇性必修二等差數(shù)列的概念(2)教學設(shè)計

    二、典例解析例3.某公司購置了一臺價值為220萬元的設(shè)備,隨著設(shè)備在使用過程中老化,其價值會逐年減少.經(jīng)驗表明,每經(jīng)過一年其價值會減少d(d為正常數(shù))萬元.已知這臺設(shè)備的使用年限為10年,超過10年 ,它的價值將低于購進價值的5%,設(shè)備將報廢.請確定d的范圍.分析:該設(shè)備使用n年后的價值構(gòu)成數(shù)列{an},由題意可知,an=an-1-d (n≥2). 即:an-an-1=-d.所以{an}為公差為-d的等差數(shù)列.10年之內(nèi)(含10年),該設(shè)備的價值不小于(220×5%=)11萬元;10年后,該設(shè)備的價值需小于11萬元.利用{an}的通項公式列不等式求解.解:設(shè)使用n年后,這臺設(shè)備的價值為an萬元,則可得數(shù)列{an}.由已知條件,得an=an-1-d(n≥2).所以數(shù)列{an}是一個公差為-d的等差數(shù)列.因為a1=220-d,所以an=220-d+(n-1)(-d)=220-nd. 由題意,得a10≥11,a11<11. 即:{█("220-10d≥11" @"220-11d<11" )┤解得19<d≤20.9所以,d的求值范圍為19<d≤20.9

上一頁123...232425262728293031323334下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。