提供各類精美PPT模板下載
當前位置:首頁 > Word文檔 >

北師大版小學數(shù)學一年級上冊《小雞吃食》說課稿

  • 北師大初中數(shù)學八年級上冊三元一次方程組2教案

    北師大初中數(shù)學八年級上冊三元一次方程組2教案

    目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質(zhì)的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內(nèi)容屬于選修學習的內(nèi)容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.

  • 北師大初中數(shù)學八年級上冊一定是直角三角形嗎1教案

    北師大初中數(shù)學八年級上冊一定是直角三角形嗎1教案

    方法總結:利用三角形三邊的數(shù)量關系來判定直角三角形,從而推出兩線的垂直關系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結:判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力、歸納能力.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    方法總結:(1)利用列表法估算一元二次方程根的取值范圍的步驟是:首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學九年級上冊一元二次方程1教案

    北師大初中數(shù)學九年級上冊一元二次方程1教案

    解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結:列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常   數(shù),a≠0),其中ax2,bx,c   分別稱為二次項、一次項和   常數(shù)項,a,b分別稱為二次   項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算2教案

    (1)x可能小于0嗎?說說你的理由;_____________________________.(2)x可能大于4嗎?可能大于2.5嗎?為什么?(3)完成下表x 0 0.5 1 1.5 2 2.52x2-13x+11 (4)你知道地毯花邊的寬x(m)是多少嗎?還有其他求解方法嗎?與同伴交流。探索2:梯子底端滑動的距離x(m)滿足方程(x+6)2+72=102,也就是x2+12x―15=0(1)你能猜出滑動距離x(m)的大致范圍嗎?(2)x的整數(shù)部分是_____?十分位是_______?x 0 x2+12x-15 所以 ___<x<___進一步計算x x2+12x-15 所以 ___<x<___因此x 的整數(shù)部分是___,十分位是___.三、當堂訓練:完成課本34頁隨堂練習四、學習體會:五、課后作業(yè)

  • 北師大初中數(shù)學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學九年級上冊用公式法求解一元二次方程1教案

    ∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.三、板書設計用公式法解一元二次方程求根公式:x=-b±b2-4ac2a(a≠0,b2-4ac≥0)用公式法解一元二次 方程的一般步驟①化為一般形式②確定a,b,c的值③求出b2-4ac④利用求根公式求解一元二次方程根的判別式經(jīng)歷從用配方法解數(shù)字系數(shù)的一元二次方程到解字母系數(shù)的一元二次方程,探索求根公式,發(fā)展學生合情合理的推理能力,并認識到配方法是理解求根公式的基礎.通過對求根公式的推導,認識到一元二次方程的求根公式適用于所有的一元二次方程,操作簡單.體會數(shù)式通性,感受數(shù)學的嚴謹性和數(shù)學結論的確定性.提高學生的運算能力,并養(yǎng)成良好的運算習慣.

  • 北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    北師大初中數(shù)學九年級上冊一元二次方程的解及其估算1教案

    首先列表,利用未知數(shù)的取值,根據(jù)一元二次方程的一般形式ax2+bx+c=0(a,b,c為常數(shù),a≠0)分別計算ax2+bx+c的值,在表中找到使ax2+bx+c可能等于0的未知數(shù)的大致取值范圍,然后再進一步在這個范圍內(nèi)取值,逐步縮小范圍,直到所要求的精確度為止.(2)在估計一元二次方程根的取值范圍時,當ax2+bx+c(a≠0)的值由正變負或由負變正時,x的取值范圍很重要,因為只有在這個范圍內(nèi),才能存在使ax2+bx+c=0成立的x的值,即方程的根.三、板書設計一元二次方程的解的估算,采用“夾逼法”:(1)先根據(jù)實際問題確定其解的大致范圍;(2)再通過列表,具體計算,進行兩邊“夾逼”,逐步獲得其近似解.“估算”在求解實際生活中一些較為復雜的方程時應用廣泛.在本節(jié)課中讓學生體會用“夾逼”的思想解決一元二次方程的解或近似解的方法.教學設計上,強調(diào)自主學習,注重合作交流,在探究過程中獲得數(shù)學活動的經(jīng)驗,提高探究、發(fā)現(xiàn)和創(chuàng)新的能力.

  • 北師大初中數(shù)學九年級上冊用公式法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 北師大初中數(shù)學九年級上冊用公式法求解一元二次方程2教案

    北師大初中數(shù)學九年級上冊用公式法求解一元二次方程2教案

    二、填空題1.一元二次方程ax2+bx+c=0(a≠0)的求根公式是________,條件是________.2.當x=______時,代數(shù)式x2-8x+12的值是-4.3.若關于x的一元二次方程(m-1)x2+x+m2+2m-3=0有一根為0,則m的值是_____.三、綜合提高題1.用公式法解關于x的方程:x2-2ax-b2+a2=0.2.設x1,x2是一元二次方程ax2+bx+c=0(a≠0)的兩根,(1)試推導x1+x2=- ,x1·x2= ;(2)求代數(shù)式a(x13+x23)+b(x12+x22)+c(x1+x2)的值.3.某電廠規(guī)定:該廠家屬區(qū)的每戶居民一個月用電量不超過A千瓦時,那么這戶居民這個月只交10元電費,如果超過A千瓦時,那么這個月除了交10元用電費外超過部分還要按每千瓦時 元收費.(1)若某戶2月份用電90千瓦時,超過規(guī)定A千瓦時,則超過部分電費為多少元?(用A表示)(2)下表是這戶居民3月、4月的用電情況和交費情況

  • 北師大初中數(shù)學九年級上冊用公式法求解一元二次方程1教案

    北師大初中數(shù)學九年級上冊用公式法求解一元二次方程1教案

    易錯提醒:利用b2-4ac判斷一元二次方程根的情況時,容易忽略二次項系數(shù)不能等于0這一條件,本題中容易誤選A.【類型三】 根的判別式與三角形的綜合應用已知a,b,c分別是△ABC的三邊長,當m>0時,關于x的一元二次方程c(x2+m)+b(x2-m)-2m ax=0有兩個相等的實數(shù)根,請判斷△ABC的形狀.解析:先將方程轉(zhuǎn)化為一般形式,再根據(jù)根的判別式確定a,b,c之間的關系,即可判定△ABC的形狀.解:將原方程轉(zhuǎn)化為一般形式,得(b+c)x2-2m ax+(c-b)m=0.∵原方程有兩個相等的實數(shù)根,∴(-2m a)2-4(b+c)(c-b)m=0,即4m(a2+b2-c2)=0.又∵m≠0,∴a2+b2-c2=0,即a2+b2=c2.根據(jù)勾股定理的逆定理可知△ABC為直角三角形.方法總結:根據(jù)一元二次方程根的情況,利用判別式得到關于一元二次方程系數(shù)的等式或不等式,再結合其他條件解題.

  • 北師大初中數(shù)學八年級上冊認識二元一次方程組1教案

    北師大初中數(shù)學八年級上冊認識二元一次方程組1教案

    小劉同學用10元錢購買兩種不同的賀卡共8張,單價分別是1元與2元.設1元的賀卡為x張,2元的賀卡為y張,那么x,y所適合的一個方程組是()A.x+y2=10,x+y=8 B.x2+y10=8,x+2y=10C.x+y=10,x+2y=8 D.x+y=8,x+2y=10解析:根據(jù)題意可得到兩個相等關系:(1)1元賀卡張數(shù)+2元賀卡張數(shù)=8(張);(2)1元賀卡錢數(shù)+2元賀卡錢數(shù)=10(元).設1元的賀卡為x張,2元的賀卡為y張,可列方程組為x+y=8,x+2y=10.故選D.方法總結:要判斷哪個方程組符合題意,可從題目中找出兩個相等關系,然后代入未知數(shù),即可得到方程組,進而得到正確答案.三、板書設計二元一次方程組二元一次方程及其解的定義二元一次方程組及其解的定義列二元一次方程組通過自主探究和合作交流,建立二元一次方程的數(shù)學模型,學會逐步掌握基本的數(shù)學知識和方法,形成良好的數(shù)學思維習慣和應用意識,提高解決問題的能力,感受數(shù)學創(chuàng)造的樂趣,增進學好數(shù)學的信心,增加對數(shù)學較全面的體驗和理解.

  • 人教版新課標小學數(shù)學一年級下冊多些、少些、多得多、少得多說課稿

    人教版新課標小學數(shù)學一年級下冊多些、少些、多得多、少得多說課稿

    在100以內(nèi)數(shù)的范圍里,18比50是少得多,但到了萬以內(nèi)數(shù)的范圍內(nèi),可能只是少一些,所以結合具體情境幫助孩子體會是很重要的教學方法。想想做做第1題是小孩在進行拍皮球比賽,讓孩子選合適的答案,在小組中說說是怎么想的,孩子在交流中就能體會到12比46少得多,50比46多一些,85比46多得多;想想做做第2題是發(fā)生在校園里的一個場景,讓孩子自己選合適的答案,說說怎么想的,孩子就能體會到16比38少的多,36比38少一些,40比38多一些;第3題的場景是在商店里,讓孩子先討論、認識“貴多啦”的含義,在進行選擇,在選擇、辨析時進一步明白貴多啦就是“用的錢多得多”;最后,和孩子進行一些活動,比比身高(孩子和孩子比、老師和孩子比)、比比身邊的一些數(shù)量大小,讓孩子嘗試用語言描述的同時體會數(shù)量之間的大小關系,感受到數(shù)學就在身邊。最后由一個游戲結束本節(jié)課,讓孩子拿一個數(shù)同45比一比,自己想兩個數(shù)讓同桌比一比,練習使用多些、少些多的多、少的多描述兩個數(shù)量之間的大小關系,增強合作能力。

  • 北師大版小學數(shù)學六年級上冊《分數(shù)混合運算(一)》說課稿

    北師大版小學數(shù)學六年級上冊《分數(shù)混合運算(一)》說課稿

    二、教法根據(jù)教材呈現(xiàn)的內(nèi)容,我在開展教學活動時是從以下幾個方面思考。1、出示情境圖,鼓勵學生分析情境中的數(shù)學信息和數(shù)量關系,明確所要解決的問題,然后了解要解決這個問題需要什么樣的條件,進而列出算式。2、討論具體的計算方法。教材中呈現(xiàn)了兩種計算方法。在這個過程中,教師可以先讓學生自主進行計算,再組織討論和交流算法之間的聯(lián)系,明白分數(shù)混合運算的順序。3、對問題的解決加以解釋,即航模小組有3人。三、學法通過本節(jié)教學,學生學會運用直觀的教學手段理解掌握新知識,學會有順序的觀察題、認真審題、正確計算、概括總結、檢查的學習習慣。四、教學程序(一)談話設計意圖:激發(fā)學生興趣,調(diào)動學生學習的積極性。(二)復習舊知1、復習整數(shù)混合運算的順序。

  • 北師大版小學數(shù)學五年級上冊《分數(shù)的再認識(一)》說課稿

    北師大版小學數(shù)學五年級上冊《分數(shù)的再認識(一)》說課稿

    一、說教材1、教學內(nèi)容北師大版小學數(shù)學五年級上冊第五單元的第一課時《分數(shù)的再認識(一)》。2、教材分析本課是學生在三年級初步認識分數(shù)的基礎上,進行深入和拓展的。在三年級,學生已結合情境和直觀操作,體驗了分數(shù)產(chǎn)生的過程,認識了整體“1”,初步了解了分數(shù)的意義,能認、讀、寫一些簡單的分數(shù)。本節(jié)課是在此基礎上,進一步引導學生認識和理解分數(shù),為后面進一步學習、運用分數(shù)知識做好鋪墊。本課的課題是《分數(shù)的再認識》,這個“再認識”,我想應該有兩方面的含義,一是進一步認識、理解分數(shù)的意義,二是結合具體的情境,讓學生體會“整體”與“部分”的關系,體會“整體不同,同一個分數(shù)所對應的數(shù)量也不同”,從而體驗數(shù)學知識形成的全過程。3、教學目標根據(jù)教學內(nèi)容和學生的認知能力,我將本節(jié)課的教學目標制定如下:

  • 北師大版小學數(shù)學六年級上冊《百分數(shù)的應用(一)》說課稿

    北師大版小學數(shù)學六年級上冊《百分數(shù)的應用(一)》說課稿

    在交流的過程中,教師要站在“導”的位置上,放手讓學生說,最后總結出,解決這個問題,重點要理解問題的實質(zhì)含義:究竟是誰和誰比,誰是單位“1”。本環(huán)節(jié)的設計既拓寬了解題思路,又鍛煉了表達能力,同時也提高了抽象概括能力。(五)鞏固拓展:實戰(zhàn)演練,我最棒!在練習的設計上,我兼顧了習題的層次性和開放性,使不同層次的學生都參與練習,以求訓練思維、培養(yǎng)能力、形成技能。(六)課堂總結通過學生說一說本節(jié)課自己的收獲,達到對本節(jié)課知識點的梳理與整理,進一步鞏固對知識點的掌握??傊竟?jié)課教學活動我力求充分體現(xiàn)以下特點:以學生為主體,充分關注學生的自主探究與合作交流。教師是學生學習的組織者、引導者、合作者,對一個問題的解決不是要教師將現(xiàn)成的方法傳授給學生,而是引導學生尋找解決問題的策略,給學生一把在知識的海洋中行舟的槳,讓學生在積極思考,大膽嘗試,主動探索中,獲取成功并體驗成功的喜悅。

  • 北師大版小學數(shù)學二年級上冊《一共有多少天》說課稿

    北師大版小學數(shù)學二年級上冊《一共有多少天》說課稿

    二.說學情:學生已學習2~6乘法口訣,已有編制口訣的活動經(jīng)驗和方法,知道計算幾個幾的方法,了解了乘法口訣的基本結構,在乘法口訣與乘法意義的聯(lián)系方面已積累了一些經(jīng)驗。二年級的學生的思維仍處于形象思維為主的階段,但已有了一定地觀察.比較.綜合的意識。在興趣濃厚的狀態(tài)下,有較強的自信心和強烈的表現(xiàn)欲望。三.說教學目標:根據(jù)二年級學生的已有基礎.認知規(guī)律,結合本課的知識特點及課程目標的要求。我們確定了如下教學目標:1.在情境中引導學生自主探索,合作交流,理解乘法意義,編制7的乘法口訣。2.在活動中引導學生熟記7的乘法口訣,會用7的乘法解決簡單的實際問題。3.在編口訣.用口訣的過程中,提高學生自主學習能力,與他人合作交流的能力,積累學習情感,享受成功喜悅。教學重難點:熟練表內(nèi)乘法,是每個學生應具備的最基本的計算能力,因此本課的教學重點是理解7的乘法口訣形成過程;難點是怎樣去熟記并利用乘法口訣來解決生活中的實際問題。

  • 北師大版小學數(shù)學三年級上冊《里程表(一)》說課稿

    北師大版小學數(shù)學三年級上冊《里程表(一)》說課稿

    這是相隔兩站的里程,相對問題1而言,難度有所增加。但數(shù)量關系不復雜,而此時學生已經(jīng)有了問題1扎實的畫圖基礎,所以我直接放手,讓學生選擇自己喜歡的方法畫圖,再算一算。3、會用圖,能選擇恰當?shù)姆椒ń鉀Q實際問題學習的最高境界是學以致用,畫一畫的目的是幫助自己解決問題,所以在學生初步掌握借助畫圖理解問題的基礎上,我及時向?qū)W生提問,你還想求哪段,鼓勵學生小組交流,并發(fā)現(xiàn)總結起點相同的里程問題的解決策略。在問題3時,我還是放手自主探究,因為有了前面的基礎,此時,聰明的學生已經(jīng)掌握了求兩站之間的里程的方法,而接受能力稍微慢一點的學生通過畫一畫明確算式中相減的兩個數(shù)量分別表示的哪一段路程,也能解答出來,這時再乘勝追擊,鼓勵學生說一個算式,讓其他學生求的是哪兩站之間的里程,這樣的設計既鞏固學習方法,又進行了開拓延展,可謂一舉兩得。本節(jié)課學生經(jīng)歷、感受著,借助畫圖分析問題、理解問題、解決問題的優(yōu)越性。讓學生在嘗試、探索中發(fā)展了思維,提高了能力。

  • 北師大版小學數(shù)學三年級上冊《一天的時間》說課稿

    北師大版小學數(shù)學三年級上冊《一天的時間》說課稿

    二、教學目標24時記時法與12時計時法的互換是本節(jié)課的一個教學難點,基于對教材的理解和學生的學習基礎,特制定如下的教學目標;1、知識與技能:結合生活經(jīng)驗,明確12時計時法和認識24時記時法,使學生發(fā)現(xiàn)和理解24時記時法與12記時法之間的聯(lián)系與區(qū)別。能夠?qū)煞N記時法所表示的時刻進行換算。并能結合具體情境,推算出從一個時刻到另一個時刻所經(jīng)過的時間。2、過程與方法:在活動中培養(yǎng)學生主動發(fā)現(xiàn)問題、探究問題、解決問題的能力。3、情感、態(tài)度與價值觀:逐步養(yǎng)成遵守作息制度和珍惜時間的良好習慣,建立初步的時間觀念。教具:多媒體課件、時鐘三、重點難點教學重點:認識24時記時法,發(fā)現(xiàn)和理解24時記時法與普通記時法之間的聯(lián)系與區(qū)別。教學難點:能正確地把24時記時法與12時記時法所表示的時刻進行相互轉(zhuǎn)化。

  • 北師大初中七年級數(shù)學上冊有理數(shù)的混合運算教案1

    北師大初中七年級數(shù)學上冊有理數(shù)的混合運算教案1

    1.掌握有理數(shù)混合運算的順序,并能熟練地進行有理數(shù)加、減、乘、除、乘方的混合運算.2.在運算過程中能合理地應用運算律簡化運算.一、情境導入在學完有理數(shù)的混合運算后,老師為了檢驗同學們的學習效果,出了下面這道題:計算-32+(-6)÷12×(-4).小明和小穎很快給出了答案.小明:-32+(-6)÷12×(-4)=-9+(-6)÷(-2)=-9+3=-6.小穎:-32+(-6)÷12×(-4)=-9+(-6)×2×(-4)=39.你能判斷出誰的計算正確嗎?二、合作探究探究點一:有理數(shù)的混合運算計算:(1)(-5)-(-5)×110÷110×(-5);(2)-1-{(-3)3-[3+23×(-112)]÷(-2)}.解析:(1)題是含有減法、乘法、除法的混合運算,運算時,一定要注意運算順序,尤其是本題中的乘除運算.要從左到右進行計算;(2)題有大括號、中括號,在運算時,可從里到外進行.注意要靈活掌握運算順序.

  • 北師大初中數(shù)學八年級上冊數(shù)據(jù)的離散程度1教案

    北師大初中數(shù)學八年級上冊數(shù)據(jù)的離散程度1教案

    (4)從平均分看,兩隊的平均分相同,實力大體相當;從折線的走勢看,甲隊比賽成績呈上升趨勢,而乙隊比賽成績呈下降趨勢;從獲勝場數(shù)看,甲隊勝三場,乙隊勝兩場,甲隊成績較好;從方差看,甲隊比賽成績比乙隊比賽成績波動小,甲隊成績較穩(wěn)定.綜上所述,選派甲隊參賽更能取得好成績.方法總結:本題是反映數(shù)據(jù)集中程度與離散程度的綜合題.從圖形中得到兩隊的成績,然后從平均數(shù)、方差的角度來考慮,在平均數(shù)相同的情況下,方差越小的越穩(wěn)定.三、板書設計數(shù)據(jù)的離散程度極差:一組數(shù)據(jù)中最大數(shù)據(jù)與最小數(shù)據(jù)的差方差:各個數(shù)據(jù)與平均數(shù)差的平方的平均數(shù) s2=1n[(x1-x)2+(x2-x)2+…+(xn-x)2]標準差:方差的算術平方根 公式:s=s2經(jīng)歷表示數(shù)據(jù)離散程度的幾個量的探索過程,通過實例體會用樣本估計總體的統(tǒng)計思想,培養(yǎng)學生的數(shù)學應用能力.通過小組合作,培養(yǎng)學生的合作意識;通過解決實際問題,讓學生體會數(shù)學與生活的密切聯(lián)系.

上一頁123...91011121314151617181920下一頁
提供各類高質(zhì)量Word文檔下載,PPT模板下載,PPT背景圖片下載,免費ppt模板下載,ppt特效動畫,PPT模板免費下載,專注素材下載!

PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。