
我們知道圓是一個(gè)旋轉(zhuǎn)對(duì)稱(chēng)圖形,無(wú)論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對(duì)稱(chēng)中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點(diǎn)O逆時(shí)針旋轉(zhuǎn)某個(gè)角度,畫(huà)出旋轉(zhuǎn)之后的圖形,比較前后兩個(gè)圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點(diǎn):圓心角、弧、弦之間的關(guān)系【類(lèi)型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點(diǎn),MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對(duì)等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵M(jìn)D⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來(lái)證明線段相等.本題考查了等弧對(duì)等圓心角,以及角平分線的性質(zhì).

一、本章知識(shí)要點(diǎn): 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進(jìn)而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點(diǎn)又是理解本章知識(shí)的關(guān)鍵,而且也是本章知識(shí)的難點(diǎn)。如何解決這一關(guān)鍵問(wèn)題,教材采取了以下的教學(xué)步驟:1. 從實(shí)際中提出問(wèn)題,如修建揚(yáng)水站的實(shí)例,這一實(shí)例可歸結(jié)為已知RtΔ的一個(gè)銳角和斜邊求已知角的對(duì)邊的問(wèn)題。顯然用勾股定理和直角三角形兩個(gè)銳角互余中的邊與邊或角與角的關(guān)系無(wú)法解出了,因此需要進(jìn)一步來(lái)研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識(shí),以含30°、45°的直角三角形為例:揭示了直角三角形中一個(gè)銳角確定為30°時(shí),那么這角的對(duì)邊與斜邊之比就確定比值為1:2。

解:四邊形ABCD是平行四邊形.證明如下:∵DF∥BE,∴∠AFD=∠CEB.又∵AF=CE,DF=BE,∴△AFD≌△CEB(SAS),∴AD=CB,∠DAF=∠BCE,∴AD∥CB,∴四邊形ABCD是平行四邊形.方法總結(jié):此題主要考查了平行四邊形的判定,以及三角形全等的判定與性質(zhì),解題的關(guān)鍵是根據(jù)條件證出△AFD≌△CEB.三、板書(shū)設(shè)計(jì)1.平行四邊形的判定定理(1)兩組對(duì)邊分別相等的四邊形是平行四邊形.2.平行四邊形的判定定理(2)一組對(duì)邊平行且相等的四邊形是平行四邊形.在整個(gè)教學(xué)過(guò)程中,以學(xué)生看、想、議、練為主體,教師在學(xué)生仔細(xì)觀察、類(lèi)比、想象的基礎(chǔ)上加以引導(dǎo)點(diǎn)撥.判定方法是學(xué)生自己探討發(fā)現(xiàn)的,因此,應(yīng)用也就成了學(xué)生自發(fā)的需要,用起來(lái)更加得心應(yīng)手.在證明命題的過(guò)程中,學(xué)生自然將判定方法進(jìn)行對(duì)比和篩選,或?qū)σ活}進(jìn)行多解,便于思維發(fā)散,不把思路局限在某一判定方法上.

在第1環(huán)節(jié)基礎(chǔ)上,再讓同學(xué)認(rèn)識(shí)到函數(shù)Y=2X-1的圖象與方程2X-Y=1的對(duì)應(yīng)關(guān)系,從而把兩個(gè)方程組成方程組,讓學(xué)生在理解二元一次方程與函數(shù)對(duì)應(yīng)的基礎(chǔ)上認(rèn)識(shí)到方程組的解與交點(diǎn)坐標(biāo)的對(duì)應(yīng)關(guān)系,從而引出二元一次方程組的圖象解法。3、例題訓(xùn)練,知識(shí)系統(tǒng)化通過(guò)書(shū)上的例1,用作圖象的方法解方程組,讓學(xué)生明白解題步驟與格式,從而規(guī)范理順?biāo)鶎W(xué)的圖象法解方程組,例題由師生合作完成,由學(xué)生說(shuō)老師寫(xiě)的方式。4、操作演練、形成技能讓學(xué)生獨(dú)立完成書(shū)P208隨堂練習(xí),給定時(shí)間,等多數(shù)學(xué)生完成后,實(shí)物投影其完成情況,并作出分析與評(píng)價(jià)。5、變式訓(xùn)練,延伸擴(kuò)展通過(guò)讓學(xué)生做收上P208的試一試,而后給一定時(shí)間相互交流,并請(qǐng)代表發(fā)言他的所悟,然而老師歸納總結(jié),并讓學(xué)生通過(guò)自已嘗試與老師的點(diǎn)拔從“數(shù)”與“形”兩個(gè)方面初步體會(huì)某些方程組的無(wú)解性,進(jìn)一步發(fā)展學(xué)生數(shù)形結(jié)合的意識(shí)和能力。6、檢測(cè)評(píng)價(jià),課題作業(yè)

一、教學(xué)目標(biāo)1.初步掌握“兩邊成比例且?jiàn)A角相等的兩個(gè)三角形相似”的判定方法.2.經(jīng)歷兩個(gè)三角形相似的探索過(guò)程,體驗(yàn)用類(lèi)比、實(shí)驗(yàn)操作、分析歸納得出數(shù)學(xué)結(jié)論的過(guò)程;通過(guò)畫(huà)圖、度量等操作,培養(yǎng)學(xué)生獲得數(shù)學(xué)猜想的經(jīng)驗(yàn),激發(fā)學(xué)生探索知識(shí)的興趣,體驗(yàn)數(shù)學(xué)活動(dòng)充滿(mǎn)著探索性和創(chuàng)造性.3.能夠運(yùn)用三角形相似的條件解決簡(jiǎn)單的問(wèn)題. 二、重點(diǎn)、難點(diǎn)1. 重點(diǎn):掌握判定方法,會(huì)運(yùn)用判定方法判定兩個(gè)三角形相似.2. 難點(diǎn):(1)三角形相似的條件歸納、證明;(2)會(huì)準(zhǔn)確的運(yùn)用兩個(gè)三角形相似的條件來(lái)判定三角形是否相似.3. 難點(diǎn)的突破方法判定方法2一定要注意區(qū)別“夾角相等” 的條件,如果對(duì)應(yīng)相等的角不是兩條邊的夾角,這兩個(gè)三角形不一定相似,課堂練習(xí)2就是通過(guò)讓學(xué)生聯(lián)想、類(lèi)比全等三角形中SSA條件下三角形的不確定性,來(lái)達(dá)到加深理解判定方法2的條件的目的的.

∴此方程無(wú)解.∴兩個(gè)正方形的面積之和不可能等于12cm2.方法總結(jié):對(duì)于生活中的應(yīng)用題,首先要全面理解題意,然后根據(jù)實(shí)際問(wèn)題的要求,確定用哪些數(shù)學(xué)知識(shí)和方法解決,如本題用方程思想和一元二次方程的根的判定方法來(lái)解決.三、板書(shū)設(shè)計(jì)列一元二次方程解應(yīng)用題的一般步驟可以歸結(jié)為“審,設(shè),列,解,檢,答”六個(gè)步驟:(1)審:審題要弄清已知量和未知量,問(wèn)題中的等量關(guān)系;(2)設(shè):設(shè)未知數(shù),有直接和間接兩種設(shè)法,因題而異;(3)列:列方程,一般先找出能夠表達(dá)應(yīng)用題全部含義的一個(gè)相等關(guān)系,列代數(shù)式表示相等關(guān)系中的各個(gè)量,即可得到方程;(4)解:求出所列方程的解;(5)檢:檢驗(yàn)方程的解是否正確,是否保證實(shí)際問(wèn)題有意義;(6)答:根據(jù)題意,選擇合理的答案.經(jīng)歷列方程解決實(shí)際問(wèn)題的過(guò)程,體會(huì)一元二次方程是刻畫(huà)現(xiàn)實(shí)世界中數(shù)量關(guān)系的一個(gè)有效數(shù)學(xué)模型.通過(guò)學(xué)生創(chuàng)設(shè)解決問(wèn)題的方案,增強(qiáng)學(xué)生的數(shù)學(xué)應(yīng)用意識(shí)和能力.

四.知識(shí)梳理談?wù)動(dòng)靡辉畏匠探鉀Q例1實(shí)際問(wèn)題的方法。五、目標(biāo)檢測(cè)設(shè)計(jì)1.如圖,寬為50cm的矩形圖案由10個(gè)全等的小長(zhǎng)方形拼成,則每個(gè)小長(zhǎng)方形的面積為( ).【設(shè)計(jì)意圖】發(fā)現(xiàn)幾何圖形中隱蔽的相等關(guān)系.2.鎮(zhèn)江)學(xué)校為了美化校園環(huán)境,在一塊長(zhǎng)40米、寬20米的長(zhǎng)方形空地上計(jì)劃新建一塊長(zhǎng)9米、寬7米的長(zhǎng)方形花圃.(1)若請(qǐng)你在這塊空地上設(shè)計(jì)一個(gè)長(zhǎng)方形花圃,使它的面積比學(xué)校計(jì)劃新建的長(zhǎng)方形花圃的面積多1平方米,請(qǐng)你給出你認(rèn)為合適的三種不同的方案.(2)在學(xué)校計(jì)劃新建的長(zhǎng)方形花圃周長(zhǎng)不變的情況下,長(zhǎng)方形花圃的面積能否增加2平方米?如果能,請(qǐng)求出長(zhǎng)方形花圃的長(zhǎng)和寬;如果不能,請(qǐng)說(shuō)明理由.【設(shè)計(jì)意圖】考查學(xué)生的審題能力及用一元二次方程模型解決簡(jiǎn)單的圖形面積問(wèn)題.

2、課標(biāo)要求對(duì)于本節(jié)課內(nèi)容課標(biāo)要求:探索并掌握兩個(gè)三角形全等的條件;注重所學(xué)內(nèi)容與現(xiàn)實(shí)生活的聯(lián)系,注重經(jīng)歷觀察、操作、推理、想像等探索過(guò)程。初步建立空間觀念,發(fā)展幾何直覺(jué);在探索并掌握兩個(gè)三角形全等的條件,與他人合作交流的過(guò)程中,發(fā)展合情推理,進(jìn)一步學(xué)習(xí)有條理的思考與表達(dá)。二、學(xué)生分析 1、七年級(jí)學(xué)生的理解能力和思維特征和生理特征,學(xué)生好動(dòng)性,注意力易分散,愛(ài)發(fā)表見(jiàn)解,希望得到老師的表?yè)P(yáng)等特點(diǎn),所以在教學(xué)中應(yīng)抓住學(xué)生這一生理心理特點(diǎn),一方面要運(yùn)用直觀生動(dòng)的形象,激發(fā)學(xué)生的興趣,使他們的注意力始終集中在課堂上;另一方面要不斷創(chuàng)造條件和機(jī)會(huì),讓學(xué)生發(fā)表見(jiàn)解,充分發(fā)揮學(xué)生學(xué)習(xí)的主動(dòng)性,體現(xiàn)學(xué)生的主體地位。

教學(xué)目標(biāo):1.知道二次函數(shù)與一元二次方程的聯(lián)系,提高綜合解決問(wèn)題的能力.2.會(huì)求拋物線與坐標(biāo)軸交點(diǎn)坐標(biāo),會(huì)結(jié)合函數(shù)圖象求方程的根.教學(xué)重點(diǎn):二次函數(shù)與一元二次方程的聯(lián)系.預(yù)設(shè)難點(diǎn):用二次函數(shù)與一元二次方程的關(guān)系綜合解題.☆ 預(yù)習(xí)導(dǎo)航 ☆一、鏈接:1.畫(huà)一次函數(shù)y=2x-3的圖象并回答下列問(wèn)題(1)求直線y=2x-3與x軸的交點(diǎn)坐標(biāo); (2)解方程2x-3=0(3)說(shuō)出直線y=2x-3與x軸交點(diǎn)的橫坐標(biāo)和方程根的關(guān)系2.不解方程3x2-2x+4=0,此方程有 個(gè)根。二、導(dǎo)讀畫(huà)二次函數(shù)y= x2-5x+4的圖象1.觀察圖象,拋物線與x軸的交點(diǎn)坐標(biāo)是什么?2.求一元二次方程x2-5x+4=0的解。3.拋物線與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程x2-5x+4=0的解有什么關(guān)系?(3)一元二次方程ax2+bx+c=0是二次函數(shù)y=ax2+bx+c當(dāng)函數(shù)值y=0時(shí)的特殊情況.二次函數(shù)y=ax2+bx+c的圖象與x軸交點(diǎn)的橫坐標(biāo)與一元二次方程ax2+bx+c=0的根有什么關(guān)系?

解:(1)設(shè)第一次落地時(shí),拋物線的表達(dá)式為y=a(x-6)2+4,由已知:當(dāng)x=0時(shí),y=1,即1=36a+4,所以a=-112.所以函數(shù)表達(dá)式為y=-112(x-6)2+4或y=-112x2+x+1;(2)令y=0,則-112(x-6)2+4=0,所以(x-6)2=48,所以x1=43+6≈13,x2=-43+6<0(舍去).所以足球第一次落地距守門(mén)員約13米;(3)如圖,第二次足球彈出后的距離為CD,根據(jù)題意:CD=EF(即相當(dāng)于將拋物線AEMFC向下平移了2個(gè)單位).所以2=-112(x-6)2+4,解得x1=6-26,x2=6+26,所以CD=|x1-x2|=46≈10.所以BD=13-6+10=17(米).方法總結(jié):解決此類(lèi)問(wèn)題的關(guān)鍵是先進(jìn)行數(shù)學(xué)建模,將實(shí)際問(wèn)題中的條件轉(zhuǎn)化為數(shù)學(xué)問(wèn)題中的條件.常有兩個(gè)步驟:(1)根據(jù)題意得出二次函數(shù)的關(guān)系式,將實(shí)際問(wèn)題轉(zhuǎn)化為純數(shù)學(xué)問(wèn)題;(2)應(yīng)用有關(guān)函數(shù)的性質(zhì)作答.

教學(xué)設(shè)計(jì)說(shuō)明:本節(jié)課從學(xué)生接觸到的實(shí)際問(wèn)題出發(fā),結(jié)合新課程標(biāo)準(zhǔn)的理念,創(chuàng)造性地使用教材而設(shè)計(jì)的一節(jié)課,是前面線段的比、成比例線段等知識(shí)在現(xiàn)實(shí)生活中的應(yīng)用. 一開(kāi)始情境的創(chuàng)設(shè)——彩色圖片的投影,給學(xué)生以美的感覺(jué),激發(fā)學(xué)生的求知欲.通過(guò)實(shí)際生活中的例子,讓學(xué)生自己發(fā)表自己的看法,培養(yǎng)學(xué)生的審美情趣,又從學(xué)生最感興趣的奧運(yùn)會(huì)的比賽中引出今天所要學(xué)習(xí)的內(nèi)容,從而進(jìn)一步培養(yǎng)學(xué)生的愛(ài)國(guó)主義情感.在教學(xué)設(shè)計(jì)中,充分發(fā)揮了學(xué)生的主觀能動(dòng)性,通過(guò)小組討論,師生間的合作交流,解決了本節(jié)課的重點(diǎn)和難點(diǎn).讓每個(gè)學(xué)生都能從同伴的交流中獲益,同時(shí)也培養(yǎng)了學(xué)生的合作意識(shí),提高了學(xué)生的動(dòng)手操作的能力.本節(jié)課在教學(xué)設(shè)計(jì)中主要運(yùn)用了引導(dǎo)探究、分組討論的教學(xué)方法;引導(dǎo)學(xué)生自主探究、合作交流的研討學(xué)習(xí)方式,確立了學(xué)生的主體地位.

1.多媒體的合理應(yīng)用,可極大的激發(fā)學(xué)生的學(xué)習(xí)興趣,提高教學(xué)效果.在本節(jié)課的“情境引入”這一教學(xué)環(huán)節(jié)中,用媒體展示的人影、皮影、手影的精彩圖片,用媒體播放的皮影戲、手影戲視頻片斷給學(xué)生以視覺(jué)沖擊,產(chǎn)生了視覺(jué)和心理的震撼,這樣在課堂“第一時(shí)間”抓住了學(xué)生的注意力、極大的激發(fā)了學(xué)生的學(xué)習(xí)熱情,將十分有利于后面教學(xué)活動(dòng)的開(kāi)展,提高課堂教學(xué)效果.2.附有挑戰(zhàn)性的“問(wèn)題(或活動(dòng))”、層層深入的“問(wèn)題串”可激發(fā)學(xué)生的探索欲望,培養(yǎng)創(chuàng)新精神,拓展思維能力.在本節(jié)課“探究活動(dòng)”這一教學(xué)環(huán)節(jié)中的“做一做”設(shè)計(jì)的4個(gè)活動(dòng),由簡(jiǎn)單的“模仿”到“創(chuàng)作設(shè)計(jì)、觀察思考”循序漸進(jìn)、挑戰(zhàn)性逐漸增大,不斷激發(fā)學(xué)生的探索欲望,引人入勝,培養(yǎng)創(chuàng)新精神,拓展能力.再如,在本節(jié)課“數(shù)學(xué)運(yùn)用”這一教學(xué)環(huán)節(jié)中的“例2”設(shè)計(jì)的2個(gè)問(wèn)題層層深入,現(xiàn)實(shí)情境味很濃,學(xué)生做起來(lái)饒有興趣.

第三環(huán)節(jié)。嘗試練習(xí),信息反饋。讓學(xué)生嘗試練習(xí):課本p152第3題,并引導(dǎo)中下學(xué)生看p152例題,教師及時(shí)點(diǎn)撥講評(píng)?!鹘處煱才胚@一過(guò)程,完全放手讓學(xué)生自主進(jìn)行,充分暴露學(xué)生的思維過(guò)程,展現(xiàn)學(xué)生生動(dòng)活潑、主動(dòng)求知和富有的個(gè)性,使學(xué)生真正成為學(xué)習(xí)的主體,使因式分解與整式的乘法的關(guān)系得到正強(qiáng)化。第四環(huán)節(jié)。小結(jié)階段。這是最后的一個(gè)環(huán)節(jié),教師出示“想一想”:下列式子從左邊到右邊是因式分解嗎,為什么?學(xué)生展開(kāi)討論,得到下列結(jié)論:A.左邊是乘法,而右邊是差,不是積;B.左右兩邊都不是整式;C.從右邊到左邊是利用了因式分解的變形方法進(jìn)行分解。由此可知,上式不是因式分解。進(jìn)而,教師呈現(xiàn)因式分解定義?!鹘處煱才胚@一過(guò)程意圖是:學(xué)生一般到臨近下課,大腦處于疲勞狀態(tài),注意力開(kāi)始分散。

用你的語(yǔ)言描述一下配方法解一元二次方程的基本步驟和需注意的問(wèn)題。 教師引導(dǎo)學(xué)生進(jìn)行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項(xiàng)。鞏固對(duì)課堂知識(shí)的理解和掌握,同時(shí)進(jìn)一步體會(huì)解一元二次方程時(shí)降次的基本策略和轉(zhuǎn)化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內(nèi)容,又有讓學(xué)有余力的學(xué)生有思考和提升的空間。思考題為后面深入研究配方法,完善對(duì)配方法的認(rèn)識(shí)做準(zhǔn)備。 同時(shí)讓學(xué)生感受到數(shù)學(xué)學(xué)習(xí)在實(shí)際生活中的作用,感受數(shù)學(xué)的美。五、板書(shū)設(shè)計(jì)我將板書(shū)分成了兩部分,重點(diǎn)突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當(dāng)?shù)木毩?xí),簡(jiǎn)單明了,重點(diǎn)突出。六、教學(xué)評(píng)價(jià)與反思本節(jié)課我根據(jù)學(xué)生的特點(diǎn)采用合作交流探究式學(xué)西方法教學(xué),讓學(xué)生動(dòng)起來(lái),感受數(shù)學(xué)學(xué)習(xí)的樂(lè)趣。讓學(xué)生更加愛(ài)學(xué)數(shù)學(xué)。

探究點(diǎn)二:選用適當(dāng)?shù)姆椒ń庖辉畏匠逃眠m當(dāng)?shù)姆椒ń夥匠蹋?1)3x(x+5)=5(x+5);(2)3x2=4x+1;(3)5x2=4x-1.解:(1)原方程可變形為3x(x+5)-5(x+5)=0,即(x+5)(3x-5)=0,∴x+5=0或3x-5=0,∴x1=-5,x2=53;(2)將方程化為一般形式,得3x2-4x-1=0.這里a=3,b=-4,c=-1,∴b2-4ac=(-4)2-4×3×(-1)=28>0,∴x=4±282×3=4±276=2±73,∴x1=2+73,x2=2-73;(3)將方程化為一般形式,得5x2-4x+1=0.這里a=5,b=-4,c=1,∴b2-4ac=(-4)2-4×5×1=-4<0,∴原方程沒(méi)有實(shí)數(shù)根.方法總結(jié):解一元二次方程時(shí),若沒(méi)有具體的要求,應(yīng)盡量選擇最簡(jiǎn)便的方法去解,能用因式分解法或直接開(kāi)平方法的選用因式分解法或直接開(kāi)平方法;若不能用上述方法,可用公式法求解.在用公式法時(shí),要先計(jì)算b2-4ac的值,若b2-4ac<0,則判斷原方程沒(méi)有實(shí)數(shù)根.沒(méi)有特殊要求時(shí),一般不用配方法.

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2

探究點(diǎn)二:用配方法解二次項(xiàng)系數(shù)為1的一元二次方程用配方法解方程:x2+2x-1=0.解析:方程左邊不是一個(gè)完全平方式,需將左邊配方.解:移項(xiàng),得x2+2x=1.配方,得x2+2x+(22)2=1+(22)2,即(x+1)2=2.開(kāi)平方,得x+1=±2.解得x1=2-1,x2=-2-1.方法總結(jié):用配方法解一元二次方程時(shí),應(yīng)按照步驟嚴(yán)格進(jìn)行,以免出錯(cuò).配方添加時(shí),記住方程左右兩邊同時(shí)加上一次項(xiàng)系數(shù)一半的平方.三、板書(shū)設(shè)計(jì)用配方法解簡(jiǎn)單的一元二次方程:1.直接開(kāi)平方法:形如(x+m)2=n(n≥0)用直接開(kāi)平方法解.2.用配方法解一元二次方程的基本思路是將方程轉(zhuǎn)化為(x+m)2=n(n≥0)的形式,再用直接開(kāi)平方法,便可求出它的根.3.用配方法解二次項(xiàng)系數(shù)為1的一元二次方程的一般步驟:(1)移項(xiàng),把方程的常數(shù)項(xiàng)移到方程的右邊,使方程的左邊只含二次項(xiàng)和一次項(xiàng);(2)配方,方程兩邊都加上一次項(xiàng)系數(shù)一半的平方,把原方程化為(x+m)2=n(n≥0)的形式;(3)用直接開(kāi)平方法求出它的解.

(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

二、合作交流活動(dòng)一:(1) 你能解哪些特殊的一元二次方程?(2) 你會(huì)解下列一元二次方程嗎?你是怎么做的?x2=5,2x2+3=5,x2+2x+1=5 ,(x+6)2 +72 = 102(3) 你能解方程x2+12x-15=0嗎?你遇到的困難是什么?你能設(shè)法將這個(gè)方程轉(zhuǎn)化成上面方程的形式嗎?與同伴進(jìn)行交流?;顒?dòng)二:做一做:填上適當(dāng)?shù)臄?shù),使下列等式成立(1)x2+12x+ =(x+6)2 (2)x2―4x+ =(x― )2 (3)x2+8x+ =(x+ )2 在上面等式的左邊,常數(shù)項(xiàng)和一次項(xiàng)有什么關(guān)系解一元二次方程的思路是什么?活動(dòng)三:例1、解方程:x2+8x-9=0你能用語(yǔ)言總結(jié)配方法嗎?課本37頁(yè)隨堂練習(xí)課時(shí)作業(yè):

【學(xué)習(xí)目標(biāo)】1 、學(xué)習(xí)過(guò)程與方法:因式分解法是把一個(gè)一元二次方程化為兩個(gè)一元一次方程來(lái)解,體現(xiàn)了一種“降次”思想、“轉(zhuǎn)化”思想,并了解這種轉(zhuǎn)化思想在解方程中的應(yīng)用。2、學(xué)習(xí)重點(diǎn) :用因式分解法解某些方程。 【溫故】1、(1)將一個(gè)多項(xiàng)式(特別是二次三項(xiàng)式)因式分解,有哪幾種分解方法?(2)將下列多項(xiàng)式因式分解① 3x2-4x ② 4x2-9y2 ③x2- 6xy+9y2④ (2x+1)2+4(2x+1)+4 【知新】1.自學(xué)課本 P46----P48[討論]以上解方程的方法是如何使二次方程降為一次的?2、用分解因式法 解方程例1、解下 列方程(1)3 x2-5x=0 (2)x(x-2) +x-2=0例2、用因式分解法解下列方程 (1)5x2-2x-1/4=x2-2x+3/4 (2)x(x-3)-4( 3-x)=0 (3)(5-x)2-16=0 (4)16(2x-1)2=25(x-2)2
PPT全稱(chēng)是PowerPoint,LFPPT為你提供免費(fèi)PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。