
四、教學設計反思這節(jié)內容是學生利用數(shù)形結合的思想去研究正比例函數(shù)的圖象,對函數(shù)與圖象的對應關系有點陌生.在教學過程中教師應通過情境創(chuàng)設激發(fā)學生的學習興趣,對函數(shù)與圖象的對應關系應讓學生動手去實踐,去發(fā)現(xiàn),對正比例函數(shù)的圖象是一條直線應讓學生自己得出.在得出結論之后,讓學生能運用“兩點確定一條直線”,很快作出正比例函數(shù)的圖象.在鞏固練習活動中,鼓勵學生積極思考,提高學生解決實際問題的能力.當然,根據(jù)學生狀況,教學設計也應做出相應的調整。如第一環(huán)節(jié):創(chuàng)設情境 引入課題,固然可以激發(fā)學生興趣,但也可能容易讓學生關注代數(shù)表達式的尋求,甚至對部分學生形成一定的認知障礙,因此該環(huán)節(jié)也可以直接開門見山,直入主題,如提出問題:正比例函數(shù)的代數(shù)形式是y=kx,那么,一個正比例函數(shù)對應的圖形具有什么特征呢?

探究點三:正比例函數(shù)的性質已知正比例函數(shù)y=-kx的圖象經過一、三象限,P1(x1,y1)、P2(x2,y2)、P3(x3,y3)三點在函數(shù)y=(k-2)x的圖象上,且x1>x3>x2,則y1,y2,y3的大小關系為()A.y1>y3>y2 B.y1>y2>y3C.y1y2>y1解析:由y=-kx的圖象經過一、三象限,可知-k>0即kx3>x2得y10時,y隨x的增大而增大;k<0時,y隨x的增大而減小.三、板書設計1.函數(shù)與圖象之間是一一對應的關系;2.作一個函數(shù)的圖象的一般步驟:列表,描點,連線;3.正比例函數(shù)的圖象的性質:正比例函數(shù)的圖象是一條經過原點的直線.經歷函數(shù)圖象的作圖過程,初步了解作函數(shù)圖象的一般步驟:列表、描點、連線.已知函數(shù)的表達式作函數(shù)的圖象,培養(yǎng)學生數(shù)形結合的意識和能力.理解一次函數(shù)的表達式與圖象之間的一一對應關系.

解析:此題作為一道開放型題,分類的方法非常多,只要能說明分類的理由即可.但要注意:按某一標準分類時,要做到不重不漏,分類標準不同時,分類的結果也就不盡相同.解:本題答案不唯一,如按柱體、錐體、球體分類:(2)(3)(5)和(6)都是柱體,(4)(7)是錐體,(1)是球體.方法總結:生活中常見幾何體有兩種分類:一種按柱體、錐體、球體分類;一種按平面和曲面分類.探究點二:幾何體的形成筆尖畫線可以理解為點動成線.使用數(shù)學知識解釋下列生活中的現(xiàn)象:(1)流星劃破夜空,留下美麗的弧線;(2)一條拉直的細線切開了一塊豆腐;(3)把一枚硬幣立在桌面上用力一轉,形成一個球.解析:解釋現(xiàn)象關鍵是看其屬于什么運動.解:(1)點動成線;(2)線動成面;(3)面動成體.方法總結:生活中的很多現(xiàn)象都可以用數(shù)學知識來解釋,關鍵是要找到生活實例與數(shù)學知識的連接點,如第(1)題可將流星看作一個點,則“點動成線”.如圖所示,將平面圖形繞軸旋轉一周,得到的幾何體是()

四、做一做(實踐)1、用牙簽和橡皮泥制作球體和一些柱體和錐體,看哪些同學做得比較標準。2、使出事先準備好的等邊三角形紙片,試將它折成一個正四面體。五、試一試(探索)課前,發(fā)給學生閱讀材料《晶體--自然界的多面體》,讓學生通過閱讀了解什么是正多面體,正多面體是柏拉圖約在公元400年獨立發(fā)現(xiàn)的,在這之前,埃及人已經用于建筑(埃及金字塔),以此激勵學生探索的欲望。教師出示實物模型:正四面體、正方體、正八面體、正十二面體、正二十面體1、以正四面體為例,說出它的頂點數(shù)、棱數(shù)和面數(shù)。2、再讓學生觀察、討論其它正多面體的頂點數(shù)、棱數(shù)和面數(shù)。將結果記入書上的P128的表格。引導學生發(fā)現(xiàn)結論。3、(延伸):若隨意做一個多面體,看看是否還是那個結果。

(2)DF∥BE.∵DE平分∠ADC,BF平分∠ABC(已知),∴∠3=12∠ADC,∠2=12∠ABC(角平分線定義).∵∠ADC=∠ABC(已知),∴∠2=∠3(等量代換).又∵∠1=∠2(已知),∴∠1=∠3(等量代換),∴DF∥BE(內錯角相等,兩直線平行).(3)AD∥BC.由(2)知∠3=∠1,又∵DE平分∠ADC(已知),∴∠ADE=∠3(角平分線定義),∠ADE=∠1(等量代換).∴∠A=180°-∠ADE-∠1=180°-2∠ADE=180°-∠ADC=180°-∠ABC(三角形內角和為180°及等量代換),即∠A+∠ABC=180°,∴AD∥BC(同旁內角互補,兩直線平行).方法總結:解此類題應首先結合圖形猜測結論,然后證明.證明兩條直線平行,一般先找它們的截線,再求同位角相等(或內錯角相等,同旁內角互補)來說明兩直線平行.若沒有公共截線,則需作出兩直線的截線輔助證明.三、板書設計平行線,的判定)判定公理:同位角相等,兩直線平行判定定理內錯角相等,兩直線平行同旁內角互補,兩直線平行本節(jié)課通過經歷探索平行線的判定方法的過程,發(fā)展學生的邏輯推理能力,逐步掌握規(guī)范的推理論證格式.

1.了解“兩點之間,線段最短”.2.能借助尺、規(guī)等工具比較兩條線段的大小,能用圓規(guī)作一條線段等于已知線段.3.了解線段的中點及線段的和、差、倍、分的意義,并能根據(jù)條件求出線段的長.一、情境導入愛護花草樹木是我們每個人都應具備的優(yōu)秀品質.從教學樓到圖書館,總有少數(shù)同學不走人行道而橫穿草坪(如圖),同學們,你覺得這樣做對嗎?為了解釋這種現(xiàn)象,學習了下面的知識,你就會知道.二、合作探究探究點一:線段長度的計算【類型一】 根據(jù)線段的中點求線段的長如圖,若線段AB=20cm,點C是線段AB上一點,M、N分別是線段AC、BC的中點.(1)求線段MN的長;(2)根據(jù)(1)中的計算過程和結果,設AB=a,其它條件不變,你能猜出MN的長度嗎?請用簡潔的話表達你發(fā)現(xiàn)的規(guī)律.

教學反思: 1.本課時設計的主導思想是:將數(shù)形結合的思想滲透給學生,使學生對數(shù)與形有一個初步的認識.為將來的學習打下基礎,這節(jié)課是一堂起始課,它為學生的思維開拓了一個新的天地.在傳統(tǒng)的教學安排中,這節(jié)課的地位沒有提到一定的高度,只是交給學生比較線段的方法,沒有從數(shù)形結合的高度去認識.實際上這節(jié)課大有可講,可以挖掘出較深的內容.在教知識的同時,交給學生一種很重要的數(shù)學思想.這一點不容忽視,在日常的教學中要時時注意.2.學生在小學時只會用圓規(guī)畫圓,不會用圓規(guī)去度量線段的大小以及截取線段,通過這節(jié)課,學生對圓規(guī)的用法有一個新的認識.3.在課堂練習中安排了度量一些三角形的邊的長度,目的是想通過度量使學生對“兩點之間線段最短”這一結論有一個感性的認識,并為下面的教學做一個鋪墊.

1.經歷從不同方向觀察物體的活動過程,發(fā)展空間觀念.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的形狀.3.能識別從三個方向看到的簡單物體的形狀,會畫立方體及簡單組合體從三個方向看到的形狀,并能根據(jù)看到的形狀描述基本幾何體或實物原型.一、情境導入觀察圖中不同方向拍攝的廬山美景.你能從蘇東坡《題西林壁》詩句:“橫看成嶺側成峰,遠近高低各不同.不識廬山真面目,只緣身在此山中.”體驗出其中的意境嗎?你能挖掘出其中蘊含的數(shù)學道理嗎?讓我們一起探索新知吧!二、合作探究探究點一:從不同的方向看物體如圖所示的幾何體是由一些小正方體組合而成的,從上面看到的平面圖形是()解析:這個幾何體從上面看,共有2行,第一行能看到3個小正方形,第二行能看到2個小正方形.故選D.

【教學目標】1.經歷從不同方向觀察物體的活動過程,發(fā)展空間觀念;能在與他人交流的過程中,合理清晰地表達自己的思維過程.2.在觀察的過程中,初步體會從不同方向觀察同一物體可能看到不同的圖形.3.能識別簡單物體的三視圖,會畫立方體及其簡單組合體的三視圖.【基礎知識精講】1.主視圖、左視圖、俯視圖的定義從不同方向觀察同一物體,從正面看到的圖叫主視圖,從左面看到的圖叫左視圖,從上面看到的圖叫做俯視圖.2.幾種幾何體的三視圖(1)正方體:三視圖都是正方形.圓錐的主視圖、左視圖都是三角形,而俯視圖的圖中有一個點表示圓錐的頂點,因為從上往下看圓錐時先看到圓錐的頂點,再看到底面的圓.3.如何畫三視圖 當用若干個小正方體搭成新的幾何體,如何畫這個新的幾何體的三視圖?

方法總結:對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質解方程用等式的性質解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結:解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結論的嚴密性.

教學目標1、知識目標:掌握等式的性質;會運用等式的性質解簡單的一元一次方程。2、能力目標:通過觀察、探究、歸納、應用,培養(yǎng)學生觀察、分析、綜合、抽象能力,獲取學習數(shù)學的方法。3、情感目標:通過學生間的交流與合作,培養(yǎng)學生積極愉悅地參與數(shù)學學習活動的意識和情感,敢于面對數(shù)學活動中的困難,獲得成功的體驗,體會解決問題中與他人合作的重要性。教學重點與難點重點:理解和應用等式的性質。難點:應用等式的性質,把簡單的一元一次方程化為“x=a”的形式。教學時數(shù) 2課時(本節(jié)課是第一課時)教學方法 多媒體教學教學過程(一) 創(chuàng)設情境,復習導入。上課開始,給出思考,(算一算,試一試)能否用估算法求出下列方程的解:(學生不用筆算,只能估算)

(1)該校被抽查的學生共有多少名?(2)現(xiàn)規(guī)定視力5.1及以上為合格,若被抽查年級共有600名學生,估計該年級在2015年有多少名學生視力合格.解析:由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù),且扇形統(tǒng)計圖中對應的A區(qū)所占的百分比已知,由此即可求出被抽查的學生人數(shù);根據(jù)扇形統(tǒng)計圖中C、D區(qū)所占的百分比,即可求出該年級在2015年有多少名學生視力合格.解:(1)該校被抽查的學生人數(shù)為80÷40%=200(人);(2)估計該年級在2015年視力合格的學生人數(shù)為600×(10%+20%)=180(人).方法總結:本題的解題技巧在于從兩個統(tǒng)計圖中獲取正確的信息,并互相補充互相利用.例如求被抽查的學生人數(shù)時,由折線統(tǒng)計圖可知2015年被抽取的學生人數(shù)是80人,與其相對應的是扇形統(tǒng)計圖中的A區(qū),而A區(qū)所占的百分比是40%,由此求出被抽查的學生人數(shù)為80÷40%=200(人).

本節(jié)課開始時,首先由一個要在一塊長方形木板上截出兩塊面積不等的正方形,引導學生得出兩個二次根式求和的運算。從而提出問題:如何進行二次根式的加減運算?這樣通過問題指向本課研究的重點,激發(fā)學生的學習興趣和強烈的求知欲望。本節(jié)課是二次根式加減法,目的是探索二次根式加減法運算法則,在設計本課時教案時,著重從以下幾點考慮:1.先通過對實際問題的解決來引入二次根式的加減運算,再由學生自主討論并總結二次根式的加減運算法則。2.四人小組探索、發(fā)現(xiàn)、解決問題,培養(yǎng)學生用數(shù)學方法解決實際問題的能力。3.對法則的教學與整式的加減比較學習。在理解、掌握和運用二次根式的加減法運算法則的學習過程中,滲透了分析、概括、類比等數(shù)學思想方法,提高學生的思維品質和興趣。

1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結:幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

1.關于二次根式的概念,要注意以下幾點:(1)從形式上看,二次根式是以根號“ ”表示的代數(shù)式,這里的開方運算是最后一步運算。如 , 等不是二次根式,而是含有二次根式的代數(shù)式或二次根式的運算;(2)當一個二次根式前面乘有一個有理數(shù)或有理式(整式或分式)時,雖然最后運算不是開方而是乘法,但為了方便起見,我們把它看作一個整體仍叫做二次根式,而前面與其相乘的有理數(shù)或有理式就叫做二次根式的系數(shù);(3)二次根式的被開方數(shù),可以是某個確定的非負實數(shù),也可以是某個代數(shù)式表示的數(shù),但其中所含字母的取值必須使得該代數(shù)式的值為非負實數(shù);(4)像“ , ”等雖然可以進行開方運算,但它們仍屬于二次根式。2.二次根式的主要性質(1) ; (2) ; (3) ;(4)積的算術平方根的性質: ;(5)商的算術平方根的性質: ;

內容:情景1:多媒體展示:提出問題:從二教樓到綜合樓怎樣走最近?情景2:如圖:在一個圓柱石凳上,若小明在吃東西時留下了一點食物在B處,恰好一只在A處的螞蟻捕捉到這一信息,于是它想從A處爬向B處,你們想一想,螞蟻怎么走最近?意圖:通過情景1復習公理:兩點之間線段最短;情景2的創(chuàng)設引入新課,激發(fā)學生探究熱情.效果:從學生熟悉的生活場景引入,提出問題,學生探究熱情高漲,為下一環(huán)節(jié)奠定了良好基礎.第二環(huán)節(jié):合作探究內容:學生分為4人活動小組,合作探究螞蟻爬行的最短路線,充分討論后,匯總各小組的方案,在全班范圍內討論每種方案的路線計算方法,通過具體計算,總結出最短路線.讓學生發(fā)現(xiàn):沿圓柱體母線剪開后展開得到矩形,研究“螞蟻怎么走最近”就是研究兩點連線最短問題,引導學生體會利用數(shù)學解決實際問題的方法.

探究點二:三角形內角和定理的推論2如圖,P是△ABC內的一點,求證:∠BPC>∠A.解析:由題意無法直接得出∠BPC>∠A,延長BP交AC于D,就能得到∠BPC>∠PDC,∠PDC>∠A.即可得證.證明:延長BP交AC于D,∵∠BPC是△ABC的外角(外角定義),∴∠BPC>∠PDC(三角形的一個外角大于任何一個和它不相鄰的內角).同理可證:∠PDC>∠A,∴∠BPC>∠A.方法總結:利用推論2證明角的大小時,兩個角應是同一個三角形的內角和外角.若不是,就需借助中間量轉化求證.三、板書設計三角形的外角外角:三角形的一邊與另一邊的延長線所組成的 角,叫做三角形的外角推論1:三角形的一個外角等于和它不相鄰的兩 個內角的和推論2:三角形的一個外角大于任何一個和它不 相鄰的內角利用已經學過的知識來推導出新的定理以及運用新的定理解決相關問題,進一步熟悉和掌握證明的步驟、格式、方法、技巧.進一步培養(yǎng)學生的邏輯思維能力和推理能力,特別是培養(yǎng)有條理的想象和探索能力,從而做到強化基礎,激發(fā)學習興趣.

方法總結:平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數(shù)量關系,從而得到相應角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構造同位角、內錯角或同旁內角,但是又要保證原有條件和結論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質),即∠B+∠BED+∠D=360°.方法總結:過一點作一條直線或線段的平行線是我們常作的輔助線.

證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內角)∴∠BDC>∠A(不等式的性質)(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。

設計意圖:最后是當堂訓練,目標檢測,這一環(huán)節(jié)要盡量讓學生獨立完成,使訓練高效,在學生訓練時教師要巡回輔導,重點關注課堂表現(xiàn)不太突出的學生,由于本課時內容多,訓練貫穿課堂始終,加上不能使用計算器,因此課堂節(jié)奏難于加快,所以當堂訓練的時間預估不足。四、教學思考1.教材是素材,本節(jié)課對教材進行了全新的處理和大膽的取舍,力求創(chuàng)設符合學生實際的問題情境,讓學生經歷從實際問題中抽象出銳角三角函數(shù)模型的過程,發(fā)展了學生的應用意識及分析問題解決問題的能力,培養(yǎng)了學生的數(shù)學建模能力及轉化的思維方法。2.充分相信學生并為學生提供展示自己的機會,課堂上要把激發(fā)學生學習熱情和獲得學習能力放在教學首位,通過運用各種啟發(fā)、激勵的語言,以及小組交流、演板等形式,幫助學生形成積極主動的求知態(tài)度。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。