
(1)依照此規(guī)律,第20個圖形共有幾個五角星?(2)擺成第n個圖形需要幾個五角星?(3)擺成第2015個圖形需要幾個五角星?解析:通過觀察已知圖形可得:每個圖形都比其前一個圖形多3個五角星,根據(jù)此規(guī)律即可解答.解:(1)根據(jù)題意得,第1個圖中,五角星有3個(3×1);第2個圖中,五角星有6個(3×2);第3個圖中,五角星有9個(3×3);第4個圖中,五角星有12個(3×4);∴第n個圖中有五角星3n個.∴第20個圖中五角星有3×20=60個.(2)擺成第n個圖形需要五角星3n個.(3)擺成第2015個圖形需要6045個五角星.方法總結(jié):此題首先要結(jié)合圖形具體數(shù)出幾個值,注意由特殊到一般的分析方法.此題的規(guī)律為擺成第n個圖形需要3n個五角星.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,經(jīng)歷觀察、操作、驗證、歸納、分析、猜想、抽象、積累、類比、轉(zhuǎn)化等思維過程,從中獲得數(shù)學知識與技能,體驗教學活動的方法,同時升華學生的情感態(tài)度和價值觀.

某文具店一支鉛筆的售價為1.2元,一支圓珠筆的售價為2元.該店在“6·1兒童節(jié)”舉行文具優(yōu)惠售賣活動,鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元.若設鉛筆賣出x支,則依題意可列得的一元一次方程為( )A.1.2×0.8x+2×0.9(60+x)=87B.1.2×0.8x+2×0.9(60-x)=87C.2×0.9x+1.2×0.8(60+x)=87D.2×0.9x+1.2×0.8(60-x)=87解析:設鉛筆賣出x支,根據(jù)“鉛筆按原價打8折出售,圓珠筆按原價打9折出售,結(jié)果兩種筆共賣出60支,賣得金額87元”,得出等量關系:x支鉛筆的售價+(60-x)支圓珠筆的售價=87,據(jù)此列出方程為1.2×0.8x+2×0.9(60-x)=87.故選B.方法總結(jié):解題的關鍵是讀懂題意,設出未知數(shù),找到題目當中的等量關系,最后列方程.三、板書設計教學過程中,通過對多種實際問題情境的分析,感受方程作為刻畫現(xiàn)實世界有效模型的意義,通過觀察、歸納一元一次方程的概念,使學生在分析實際問題情境的活動中體會數(shù)學與現(xiàn)實的密切聯(lián)系.

解析:根據(jù)AB∥CD,∠ACD=120°,得出∠CAB=60°.再根據(jù)尺規(guī)作圖得出AM是∠CAB的平分線,即可得出∠MAB的度數(shù).解:∵AB∥CD,∴∠ACD+∠CAB=180°.又∵∠ACD=120°,∴∠CAB=60°.由尺規(guī)作圖知AM是∠CAB的平分線,∴∠MAB=12∠CAB=30°.方法總結(jié):通過本題要掌握角平分線的作圖步驟,根據(jù)作圖明確AM是∠BAC的角平分線是解題的關鍵.三、板書設計1.角平分線的性質(zhì):角平分線上的點到這個角的兩邊的距離相等.2.角平分線的作法本節(jié)課由于采用了動手操作以及討論交流等教學方法,從而有效地增強了學生對角以及角平分線的性質(zhì)的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生在性質(zhì)的運用上還存在問題,需要在今后的教學與作業(yè)中進一步的加強鞏固和訓練

方法總結(jié):讓利10%,即利潤為原來的90%.探究點三:求原價某商場節(jié)日酬賓:全場8折.一種電器在這次酬賓活動中的利潤率為10%,它的進價為2000元,那么它的原價為多少元?解析:本題中的利潤為(2000×10%)元,銷售價為(原價×80%)元,根據(jù)公式建立起方程即可.解:設原價為x元,根據(jù)題意,得80%x-2000=2000×10%.解得x=2750.答:它的原價為2750元.方法總結(jié):典例關系:售價=進價+利潤,售價=原價×打折數(shù)×0.1,售價=進價×(1+利潤率).三、板書設計本節(jié)課從和我們的生活息息相關的利潤問題入手,讓學生在具體情境中感受到數(shù)學在生活實際中的應用,從而激發(fā)他們學習數(shù)學的興趣.根據(jù)“實際售價=進價+利潤”等數(shù)量關系列一元一次方程解決與打折銷售有關的實際問題.審清題意,找出等量關系是解決問題的關鍵.另外,商品經(jīng)濟問題的題型很多,讓學生觸類旁通,達到舉一反三,靈活的運用有關的公式解決實際問題,提高學生的數(shù)學能力.

解:(1)設x分鐘后兩人第一次相遇,由題意,得360x-240x=400.解得x=103.(103×360+103×240)÷400=5(圈).答:兩人一共跑了5圈.(2)設x分鐘后兩人第一次相遇,由題意,得360x+240x=400.解得x=23(分鐘)=40(秒).答:40秒后兩人第一次相遇.方法總結(jié):環(huán)形問題中的相等關系:兩個人同地背向而行:相遇問題(首次相遇),甲的行程+乙的行程=一圈周長;兩個人同地同向而行:追及問題(首次追上),甲的行程-乙的行程=一圈周長.三、板書設計追趕小明→行程問題→相遇問題追及問題環(huán)形問題教學過程中,通過對開放性問題的探討與交流,體驗生活中數(shù)學的應用與價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學習數(shù)學的興趣,培養(yǎng)學生的創(chuàng)新意識、團隊精神和克服困難的勇氣.

解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結(jié):掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點

方法總結(jié):觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內(nèi)容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結(jié)、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當?shù)姆椒?/p>

解析:由于多邊形(三邊以上的)不具有穩(wěn)定性,將其轉(zhuǎn)化為三角形后木架的形狀就不變了.根據(jù)具體多邊形轉(zhuǎn)化為三角形的經(jīng)驗及題中所加木條可找到一般規(guī)律.解:過n邊形的一個頂點可以作(n-3)條對角線,把多邊形分成(n-2)個三角形,所以,要使一個n邊形木架不變形,至少需要(n-3)根木條固定.方法總結(jié):將多邊形轉(zhuǎn)化為三角形時,所需要的木條根數(shù),可從具體到一般去發(fā)現(xiàn)規(guī)律,然后驗證求解.三、板書設計1.邊邊邊:三邊對應相等的兩個三角形全等,簡寫成“邊邊邊”或“SSS”.2.三角形的穩(wěn)定性本節(jié)課從操作探究活動入手,有效地激發(fā)了學生的學習積極性和探究熱情,提高了課堂的教學效率,促進了學生對新知識的理解和掌握.從課堂教學的情況來看,學生對“邊邊邊”掌握較好,達到了教學的預期目的.存在的問題是少數(shù)學生在輔助線的構(gòu)造上感到困難,不知道如何添加合理的輔助線,還需要在今后的教學中進一步加強鞏固和訓練

解:(1)電動車的月產(chǎn)量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產(chǎn)量y是時間x的因變量;(2)6月份產(chǎn)量最高,1月份產(chǎn)量最低;(3)6月份和1月份相差最大,在1月份加緊生產(chǎn),實現(xiàn)產(chǎn)量的增值.方法總結(jié):觀察因變量隨自變量變化而變化的趨勢,實質(zhì)是觀察自變量增大時,因變量是隨之增大還是減?。?、板書設計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質(zhì)即可解答;(2)根據(jù)線段垂直平分線的性質(zhì)判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結(jié):此題主要考查線段的垂直平分線的性質(zhì)等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

方法總結(jié):絕對值小于1的數(shù)也可以用科學記數(shù)法表示,一般形式為a×10-n,其中1≤a<10,n為正整數(shù).與較大數(shù)的科學記數(shù)法不同的是其所使用的是負整數(shù)指數(shù)冪,指數(shù)由原數(shù)左邊起第一個不為零的數(shù)前面的0的個數(shù)所決定.【類型二】 將用科學記數(shù)法表示的數(shù)還原為原數(shù)用小數(shù)表示下列各數(shù):(1)2×10-7; (2)3.14×10-5;(3)7.08×10-3; (4)2.17×10-1.解析:小數(shù)點向左移動相應的位數(shù)即可.解:(1)2×10-7=0.0000002;(2)3.14×10-5=0.0000314;(3)7.08×10-3=0.00708; (4)2.17×10-1=0.217.方法總結(jié):將科學記數(shù)法表示的數(shù)a×10-n還原成通常表示的數(shù),就是把a的小數(shù)點向左移動n位所得到的數(shù).三、板書設計用科學記數(shù)法表示絕對值小于1的數(shù):一般地,一個小于1的正數(shù)可以表示為a×10n,其中1≤a<10,n是負整數(shù).從本節(jié)課的教學過程來看,結(jié)合了多種教學方法,既有教師主導課堂的例題講解,又有學生主導課堂的自主探究.課堂上學習氣氛活躍,學生的學習積極性被充分調(diào)動,在拓展學生學習空間的同時,又有效地保證了課堂學習質(zhì)量

1.能從統(tǒng)計圖中獲取信息,并求出相關數(shù)據(jù)的平均數(shù)、中位數(shù)、眾數(shù);(重點)2.理解并分析平均數(shù)、中位數(shù)、眾數(shù)所體現(xiàn)的集中趨勢.(難點)一、情境導入某次射擊比賽,甲隊員的成績?nèi)缦拢?1)根據(jù)統(tǒng)計圖,確定10次射擊成績的眾數(shù)、中位數(shù),說說你的做法,并與同伴交流.(2)先估計這10次射擊成績的平均數(shù),再具體算一算,看看你的估計水平如何.二、合作探究探究點一:從折線統(tǒng)計圖分析數(shù)據(jù)的集中趨勢廣州市努力改善空氣質(zhì)量,近年空氣質(zhì)量明顯好轉(zhuǎn),根據(jù)廣州市環(huán)境保護局公布的2006~2010年這五年各年的全年空氣質(zhì)量優(yōu)良的天數(shù),繪制成折線圖如圖所示.根據(jù)圖中信息回答:(1)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的中位數(shù)是________;(2)這五年的全年空氣質(zhì)量優(yōu)良天數(shù)與它前一年相比較,增加最多的是________年(填寫年份);(3)求這五年的全年空氣質(zhì)量優(yōu)良天數(shù)的平均數(shù).解析:(1)由圖知,把這五年的全年空氣質(zhì)量優(yōu)良天數(shù)按照從小到大的順序排列為:333,334,345,347,357,所以中位數(shù)是345;

1.會用二次根式的四則運算法則進行簡單地運算;(重點)2.靈活運用二次根式的乘法公式.(難點)一、情境導入下面正方形的邊長分別是多少?這兩個數(shù)之間有什么關系,你能借助什么運算法則或運算律解釋它?二、合作探究探究點一:二次根式的乘除運算【類型一】 二次根式的乘法計算:(1)3×5; (2)13×27;(3)2xy×1x; (4)14×7.解:(1)3×5=15;(2)13×27=13×27=9=3;(3)2xy×1x=2xy×1x=2y;(4)14×7=14×7=72×2=72.方法總結(jié):幾個二次根式相乘,把它們的被開方數(shù)相乘,根指數(shù)不變,如果積含有能開得盡方的因數(shù)或因式,一定要化簡.【類型二】 二次根式的除法計算a2-2a÷a的結(jié)果是()A.-a-2 B.--a-2C.a-2 D.-a-2解析:原式=a2-2aa=a(a-2)a=a-2.故選C.

3.想一想在例1中,(1)點B與點C的縱坐標相同,線段BC的位置有什么特點?(2)線段CE位置有什么特點?(3)坐標軸上點的坐標有什么特點?由B(0,-3),C(3,-3)可以看出它們的縱坐標相同,即B,C兩點到X軸的距離相等,所以線段BC平行于橫軸(x軸),垂直于縱軸(y軸)。第三環(huán)節(jié)學有所用.補充:1.在下圖中,確定A,B,C,D,E,F(xiàn),G的坐標。(第1題) (第2題)2.如右圖,求出A,B,C,D,E,F(xiàn)的坐標。第四環(huán)節(jié)感悟與收獲1.認識并能畫出平面直角坐標系。2.在給定的直角坐標系中,由點的位置寫出它的坐標。3.能適當建立直角坐標系,寫出直角坐標系中有關點的坐標。4.橫(縱)坐標相同的點的直線平行于y軸,垂直于x軸;連接縱坐標相同的點的直線平行于x軸,垂直于y軸。5.坐標軸上點的縱坐標為0;縱坐標軸上點的坐標為0。6.各個象限內(nèi)的點的坐標特征是:第一象限(+,+)第二象限(-,+),第三象限(-,-)第四象限(+,-)。

方法總結(jié):平行線與角的大小關系、直線的位置關系是緊密聯(lián)系在一起的.由兩直線平行的位置關系得到兩個相關角的數(shù)量關系,從而得到相應角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.

解:設正比例函數(shù)的表達式為y1=k1x,一次函數(shù)的表達式為y2=k2x+b.∵點A(4,3)是它們的交點,∴代入上述表達式中,得3=4k1,3=4k2+b.∴k1=34,即正比例函數(shù)的表達式為y=34x.∵OA=32+42=5,且OA=2OB,∴OB=52.∵點B在y軸的負半軸上,∴B點的坐標為(0,-52).又∵點B在一次函數(shù)y2=k2x+b的圖象上,∴-52=b,代入3=4k2+b中,得k2=118.∴一次函數(shù)的表達式為y2=118x-52.方法總結(jié):根據(jù)圖象確定一次函數(shù)的表達式的方法:從圖象上選取兩個已知點的坐標,然后運用待定系數(shù)法將兩點的橫、縱坐標代入所設表達式中求出待定系數(shù),從而求出函數(shù)的表達式.【類型三】 根據(jù)實際問題確定一次函數(shù)的表達式某商店售貨時,在進價的基礎上加一定利潤,其數(shù)量x與售價y的關系如下表所示,請你根據(jù)表中所提供的信息,列出售價y(元)與數(shù)量x(千克)的函數(shù)關系式,并求出當數(shù)量是2.5千克時的售價.

證法二:(1)延長BD交AC于E(或延長CD交AB于E),如圖.則∠BDC是△CDE的一個外角.∴∠BDC>∠DEC.(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∵∠DEC是△ABE的一個外角(已作)∴∠DEC>∠A(三角形的一個外角大于任何一個和它不相鄰的內(nèi)角)∴∠BDC>∠A(不等式的性質(zhì))(2)延長BD交AC于E,則∠BDC是△DCE的一個外角.∴∠BDC=∠C+∠DEC(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∵∠DEC是△ABE的一個外角∴∠DEC=∠A+∠B(三角形的一個外角等于和它不相鄰的兩個內(nèi)角的和)∴∠BDC=∠B+∠C+∠BAC(等量代換)活動目的:讓學生接觸各種類型的幾何證明題,提高邏輯推理能力,培養(yǎng)學生的證明思路,特別是不等關系的證明題,因為學生接觸較少,因此更需要加強練習.注意事項:學生對于幾何圖形中的不等關系的證明比較陌生,因此有必要在證明第2小題中,要引導學生找到一個過渡角∠ACB,由∠1>∠ACB,∠ACB>∠2,再由不等關系的傳遞性得出∠1>∠2。

煤的價格為400元/噸,生產(chǎn)1噸甲產(chǎn)品除需原料費用外,還需其他費用400元,甲產(chǎn)品每噸售價4600元;生產(chǎn)1噸乙產(chǎn)品除原料費用外,還需其他費用500元,乙產(chǎn)品每噸售價5500元.現(xiàn)將該礦石原料全部用完,設生產(chǎn)甲產(chǎn)品x噸,乙產(chǎn)品m噸,公司獲得的總利潤為y元.(1)寫出m與x的關系式;(2)寫出y與x的函數(shù)關系式.(不要求寫自變量的取值范圍)解析:(1)因為礦石的總量一定,當生產(chǎn)的甲產(chǎn)品的數(shù)量x變化時,那么乙產(chǎn)品的產(chǎn)量m將隨之變化,m和x是動態(tài)變化的兩個量;(2)題目中的等量關系為總利潤y=甲產(chǎn)品的利潤+乙產(chǎn)品的利潤.解:(1)因為4m+10x=300,所以m=150-5x2.(2)生產(chǎn)1噸甲產(chǎn)品獲利為4600-10×200-4×400-400=600(元);生產(chǎn)1噸乙產(chǎn)品獲利為5500-4×200-8×400-500=1000(元).所以y=600x+1000m.將m=150-5x2代入,得y=600x+1000×150-5x2,即y=-1900x+75000.方法總結(jié):根據(jù)條件求一次函數(shù)的關系式時,要找準題中所給的等量關系,然后求解.

方法總結(jié):利用三角形三邊的數(shù)量關系來判定直角三角形,從而推出兩線的垂直關系.探究點二:勾股數(shù)下列幾組數(shù)中是勾股數(shù)的是________(填序號).①32,42,52;②9,40,41;③13,14,15;④0.9,1.2,1.5.解析:第①組不符合勾股數(shù)的定義,不是勾股數(shù);第③④組不是正整數(shù),不是勾股數(shù);只有第②組的9,40,41是勾股數(shù).故填②.方法總結(jié):判斷勾股數(shù)的方法:必須滿足兩個條件:一要符合等式a2+b2=c2;二要都是正整數(shù).三、板書設計勾股定理的逆定理: 如果一個三角形的三邊長a,b,c滿足a2+b2=c2,那么這個三角形是直角三角形.勾股數(shù):滿足a2+b2=c2的三個正整數(shù),稱為勾股數(shù).經(jīng)歷一般規(guī)律的探索過程,發(fā)展學生的抽象思維能力、歸納能力.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣.

解:設甲班的人數(shù)為x人,乙班的人數(shù)為y人,根據(jù)題意,得x+y=93,14x+13y=27,解得x=48,y=45.答:甲班的人數(shù)為48人,乙班的人數(shù)為45人.方法總結(jié):設未知數(shù)時,一般是求什么,設什么,并且所列方程的個數(shù)與未知數(shù)的個數(shù)相等.解這類問題的應用題,要抓住題中反映數(shù)量關系的關鍵字:和、差、倍、幾分之幾、比、大、小、多、少、增加、減少等,明確各種反映數(shù)量關系的關鍵字的含義.三、板書設計列方程組,解決問題)一般步驟:審、設、列、解、驗、答關鍵:找等量關系通過“雞兔同籠”,把同學們帶入古代的數(shù)學問題情景,學生體會到數(shù)學中的“趣”;進一步強調(diào)數(shù)學與生活的聯(lián)系,突出顯示數(shù)學教學的實際價值,培養(yǎng)學生的人文精神;進一步豐富學生數(shù)學學習的成功體驗,激發(fā)學生對數(shù)學學習的好奇心,進一步形成積極參與數(shù)學活動、主動與他人合作交流的意識.
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。