
解:設另一個因式為2x2-mx-k3,∴(x-3)(2x2-mx-k3)=2x3-5x2-6x+k,2x3-mx2-k3x-6x2+3mx+k=2x3-5x2-6x+k,2x3-(m+6)x2-(k3-3m)x+k=2x3-5x2-6x+k,∴m+6=5,k3-3m=6,解得m=-1,k=9,∴k=9,∴另一個因式為2x2+x-3.方法總結:因為整式的乘法和分解因式互為逆運算,所以分解因式后的兩個因式的乘積一定等于原來的多項式.三、板書設計1.因式分解的概念把一個多項式轉化成幾個整式的積的形式,這種變形叫做因式分解.2.因式分解與整式乘法的關系因式分解是整式乘法的逆運算.本課是通過對比整式乘法的學習,引導學生探究因式分解和整式乘法的聯(lián)系,通過對比學習加深對新知識的理解.教學時采用新課探究的形式,鼓勵學生參與到課堂教學中,以興趣帶動學習,提高課堂學習效率.

解析:整個陰影部分比較復雜和分散,像此類問題通常使用割補法來計算.連接BD、AC,由正方形的對稱性可知,AC與BD必交于點O,正好把左下角的陰影部分分成(Ⅰ)與(Ⅱ)兩部分(如圖②),把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使整個陰影部分割補成半個正方形.解:如圖②,把陰影部分(Ⅰ)繞點O逆時針旋轉90°至陰影部分①處,把陰影部分(Ⅱ)繞點O順時針旋轉90°至陰影部分②處,使原陰影部分變?yōu)槿鐖D②的陰影部分,即正方形的一半,故陰影部分面積為12×10×10=50(cm2).方法總結:本題是利用旋轉的特征:旋轉前、后圖形的形狀和大小不變,把圖形利用割補法補全為一個面積可以計算的規(guī)則圖形.三、板書設計1.簡單的旋轉作圖2.旋轉圖形的應用教學過程中,強調學生自主探索和合作交流,經(jīng)歷觀察、歸納和動手操作,利用旋轉的性質作圖.

一、復習導入1、口答:最大的一位數(shù)是幾?最小的兩位數(shù)是多少?這兩個數(shù)相差多少?2、數(shù)數(shù):10個10個地數(shù),從10數(shù)到100; 1個1個地數(shù),從91數(shù)到99; 問:99加1是多少?3、導入:你會從100開始接著往后數(shù)嗎?今天開始我們將要學習更大的數(shù),下面請你們觀察這幅圖。二、講授新課1、出示主題圖。(1)觀察這幅圖,說一說畫面上正在發(fā)生什么事情?(2)看著畫面你想知道什么問題?引導學生估算畫面上的體育館大約能坐多少人?2、板書課題:1000以內數(shù)的認識。3、教學例1。(1)數(shù)一數(shù)。每人數(shù)出10個小方塊,說說你是怎么數(shù)的?板書:一個一個地數(shù),10個一是十。

1、復習萬以內數(shù)的認識。 請同學們先來回憶一下,我們學了萬以內數(shù)的哪些知識? 回憶學了萬以內數(shù)的數(shù)數(shù)、讀數(shù)、寫數(shù)、數(shù)的組成、數(shù)位的含義、數(shù)的順序和大小比較、近似數(shù)以及整百、整千數(shù)的加減法……2、下面先請大家獨立做教材第3題,然后集體訂正。 指名讓學生說一說是怎么做的?3、寫一寫,再讀一讀。① 千位上是2個千、百位上是5個百、個位上是6個一。② 二千五百零六。4、 下面復習用計數(shù)單位表示數(shù),獨立完成書上第4題,想一想是怎樣做出來的。5、 復習近似數(shù)。請同學們看教材第5題,找出這段文字中哪些數(shù)是近似數(shù)?并畫出來。再請同學回答。

二、介紹故事出處和文中人物《資治通鑒》是司馬光主持編纂的一部編年體通史,記載了從戰(zhàn)國到五代共1362年間的史事。司馬光:字君實,陜州夏縣人,北宋政治家、史學家。書名“資治”,說明本書編撰的目的是為封建統(tǒng)治階級提供政治借鑒。孫權(182—252):字仲謀,吳郡富春人,三國時吳國的建立者。呂蒙:字子明,三國時吳國名將。三、朗讀感知課文1、聽朗讀課文,注意人物對話的語氣 (1)“卿今當涂掌事,不可不學!” 語重心長,諄諄告誡(2)“孤豈欲卿治經(jīng)為博士邪!” (反問句,強調并不是要呂蒙研究儒家經(jīng)典,當專掌經(jīng)學傳授的學官,而是有別的目的。)(3)“卿言多務,孰若孤?” 反問句,否定呂蒙辭以多務的理由。要重讀強調(4)“卿今者才略,非復吳下阿蒙!” 感嘆句,要顯出驚訝不解的語氣(5)“大兄何見事之晚乎!”反問句,指責中帶有自豪的語氣

【目標導航】1.通過多個故事的學習,能夠選擇有波折的典型材料,并學會畫故事情節(jié)圖;2.交流閱讀故事的心得體會,掌握創(chuàng)寫故事的基礎知識,激發(fā)學生的聯(lián)想與想象,并合理的運用到寫作中;3.通過多個故事的訓練,培養(yǎng)寫作興趣,能夠多問“為什么”“怎么樣”,寫出比較精彩的故事。在創(chuàng)編故事中學會尊重他人的愛,學會關愛他人。一、以小組為單位,圍繞一個話題,同學自由發(fā)揮想象,開展故事接龍活動。二、在你的身邊或社會上,每天都在發(fā)生著各種各樣有趣的或有意義的事。以某一件事為素材,展開合理的想象,自擬題目,寫一篇故事。不少于600字。三、我們熟悉的各種事物,都可能引發(fā)故事,比如眼睛、頭發(fā)、嘴巴,比如書包、校服、手機,又比如軍訓、旅游、社會實踐活動,等等。這些物或事一定有不少值得挖掘的地方,有不少出人意外的富有戲劇性的故事。以《 的故事》為題,寫一篇作文。不少于600字。

【目標導航】1.培養(yǎng)留心觀察、勤于考證的意識,能初步認識到“行萬里路”是增長人生見識和鍛煉獨立生活能力的必要途徑。2.抓住特點描寫景物,重點突出,詳略得當。3.在寫作活動中了解祖國大好河山,增強熱愛家鄉(xiāng)和祖國的情感,學寫文情并茂的游記?!菊n時安排】2課時。【課時分配】建議第一課時進行作文指導與寫作,第二課時進行批改、評講、修改。了解作文文題,熟悉作文要求,搜集相關素材,為習作做準備。1.游記常常要對某處景物做定點觀察,以寫出景物的特點。選擇你游覽過的一個景點,圍繞其中的一處風景,寫一個片段。200字左右。2.我們應該都有過出游的經(jīng)歷。旅途中,我們不僅觀賞自然風光,了解民風民俗,同時也會有許多新奇的感受,產(chǎn)生很多思考和遐想。自擬題目,寫一篇游記。不少于600字。3.你一定看過一些展覽,參觀過一些紀念館或博物館,請選擇一次這樣的經(jīng)歷,以《參觀 》為題,寫一篇參觀記。不少于600字。

方法總結:描述一個代數(shù)式的意義,可以從字母本身出發(fā)來描述字母之間的數(shù)量關系,也可以聯(lián)系生活實際或幾何背景賦予其中字母一定的實際意義加以描述.探究點四:根據(jù)實際問題列代數(shù)式用代數(shù)式表示下列各式:(1)王明同學買2本練習冊花了n元,那么買m本練習冊要花多少元?(2)正方體的棱長為a,那么它的表面積是多少?體積呢?解析:(1)根據(jù)買2本練習冊花了n元,得出買1本練習冊花n2元,再根據(jù)買了m本練習冊,即可列出算式.(2)根據(jù)正方體的棱長為a和表面積公式、體積公式列出式子.解:(1)∵買2本練習冊花了n元,∴買1本練習冊花n2元,∴買m本練習冊要花12mn元;(2)∵正方體的棱長為a,∴它的表面積是6a2;它的體積是a3.方法總結:此題考查了列代數(shù)式,用到的知識點包括正方體的表面積公式和體積公式,根據(jù)題意列出式子是解本題的關鍵.

一.學習目的和要求:1.對本章內容的認識更全面、更系統(tǒng)化。2.進一步加深對本章基礎知識的理解以及基本技能的掌握,并能靈活運用。二.學習重點和難點:重點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用。難點:本章基礎知識的歸納、總結;基礎知識的運用;整式的加減運算的靈活運用與提高。三.學習方法:歸納,總結 交流、練習 探究 相結合 四.教學目標和教學目標解析:教學目標1 同類項 同類項:所含字母相同,并且相同字母的指數(shù)也分別相等的項,另外所有的常數(shù)項都是同類項。例如: 與 是同類項; 與 是同類項。注意:同類項與系數(shù)大小無關,與字母的排列順序無關。教學目標2 合并同類項法則 合并同類項法則:把同類項的系數(shù)相加,所得結果作為系數(shù),字母和字母的指數(shù)保持不變,如: 。

一天,王村的小明奶奶提著一籃子土豆去換蘋果,雙方商定的結果是:1千克土豆換0.5千克蘋果.當稱完帶籃子的土豆重量后,攤主對小明奶奶說:“別稱籃子的重量了,稱蘋果時也帶籃子稱,這樣既省事又互不吃虧.”你認為攤主的話有道理嗎?請你用所學的有關數(shù)學知識加以判定.解析:要看攤主說得有沒有道理,只要按稱籃子和不稱籃子兩種方式分別求出所得蘋果的重量,比較即可.解:設土豆重a千克,籃子重b千克,則應換蘋果0.5a千克.若不稱籃子,則實換蘋果為0.5a+0.5b-b=(0.5a-0.5b)千克,很明顯小明奶奶少得蘋果0.5b千克.所以攤主說得沒有道理,這樣做小明奶奶吃虧了.方法總結:體現(xiàn)了數(shù)學在生活中的運用.解決問題的關鍵是讀懂題意,找到所求的量之間的關系.三、板書設計數(shù)學教學要緊密聯(lián)系學生的生活實際,本節(jié)課從實際問題入手,引出合并同類項的概念.通過獨立思考、討論交流等方式歸納出合并同類項的法則,通過例題教學、練習等方式鞏固相關知識.教學中應激發(fā)學生主動參與學習的積極性,培養(yǎng)學生思維的靈活性.

本節(jié)課采取了開門見山的切入方法,旨在激發(fā)學生的求知欲望,在學生已有的認識基礎上,讓學生經(jīng)歷了“觀察、思考、探究、實踐”的過程。在總結出同類項定義后,沒有按通常的做法,即直接分析定義中的兩個條件,強調兩個條件缺一不可,而是通過一組練習,讓學生在具體問題中體會定義中的兩個條件缺一不可,使他們先有較強烈的感性認識,而后,分析定義中的兩個條件,這樣會給學生留下更深刻、更牢固的印象.這樣的設計既符合學生的年齡特征,也符合“從感性到理性、從具體到抽象”的認知規(guī)律。數(shù)學不應只強調抽象、嚴謹,這樣不但會更顯數(shù)學教學的枯燥,而且會使學生在學習中出現(xiàn)畏難情緒,甚至喪失學習數(shù)學的興趣。通過本節(jié)課的教學,我認為還存在一些不足,一部分學生的學習能力還有待于進一步培養(yǎng)。如:學習同類項的概念時,當把字母順序進行改變后,部分學生就認為不是同類項。

1.理解角的概念,掌握角的表示方法.2.理解平角、周角的概念,掌握角的常用度量單位:度、分、秒,及它們之間的換算關系,并會進行簡單的換算.一、情境導入鐘表是我們生活中常見的物品,同學們,你能說出圖中每個鐘表時針與分針所成的角度嗎?學完了下面的內容,就會知道答案.二、合作探究探究點一:角的概念及其表示方法【類型一】 對角的概念的考查下列關于角的說法中正確的有()①角是由兩條射線組成的圖形;②角的邊越長,角越大;③在角一邊的延長線上取一點;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形.A.1個 B.2個 C.3個 D.4個解析:①角是由有公共端點的兩條射線組成的圖形,錯誤;②角的大小與開口大小有關,角的邊是射線,沒有長短之分,錯誤;③角的邊是射線,不能延長,錯誤;④角可以看作由一條射線繞著它的端點旋轉而形成的圖形,說法正確.所以只有④正確.故選A.

方法總結:本題考查了利用數(shù)軸,比較數(shù)的大小關系,對于含有絕對值的式子的化簡,要根據(jù)絕對值內的式子的正負,去掉絕對值符號.探究點四:含括號的整式的化簡應用某商店有一種商品每件成本a元,原來按成本增加b元定出售價,售出40件后,由于庫存積壓,調整為按售價的80%出售,又銷售了60件.(1)銷售100件這種商品的總售價為多少元?(2)銷售100件這種商品共盈利多少元?解析:(1)求出前40件的售價與后60件的售價即可確定出總售價;(2)由“利潤=售價-成本”列出關系式即可得到結果.解:(1)根據(jù)題意得:40(a+b)+60(a+b)×80%=88a+88b(元),則銷售100件這種商品的總售價為(88a+88b)元;(2)根據(jù)題意得:88a+88b-100a=-12a+88b(元),則銷售100件這種商品共盈利(-12a+88b)元.方法總結:解決此類題目的關鍵是熟記去括號法則和熟練運用合并同類項的法則.

根據(jù)題意,得34%x-18%x=160,解得x=1000.所以48%x=48%×1000=480(公頃),18%x=18%×1000=180(公頃),34%x=34%×1000=340(公頃).答:玉米種了340公頃,高粱種了180公頃,水稻種了480公頃.方法總結:從扇形統(tǒng)計圖中獲取正確的信息是解題的關鍵.語文老師對班上學生的課外閱讀情況做了調查,并請數(shù)學老師制作了如圖所示的統(tǒng)計圖.(1)哪種書籍最受歡迎?(2)哪兩種書籍受歡迎程度差不多?(3)圖中扇形分別表示什么?(4)圖中的各個百分比如何得到?所有的百分比之和是多少?解:(1)科幻書籍最受歡迎,可從扇形的大小或圖中百分比的大小得出.(2)科普書籍和武俠書籍受歡迎程度差不多,可從圖中扇形大小或圖中所標百分比的大小得出.(3)圖中扇形分別代表了最喜歡某種書籍的人數(shù)占全班人數(shù)的百分比.(4)用最喜歡某種書籍的人數(shù)比全班的總人數(shù)即可得各個百分比,所有的百分比之和為1.方法總結:由扇形統(tǒng)計圖獲取信息時,一定要明確各個項目和它們所占圓面的百分比.

將有理數(shù)-2,+1,0,-212,314在數(shù)軸上表示出來,并用“<”號連接各數(shù).解析:利用數(shù)軸上的點來表示相應的數(shù),再利用它們對應點的位置來判斷各數(shù)的大?。猓喝鐖D:由數(shù)軸可知-212<-2<0<+1<314.方法總結:一般地,數(shù)軸上多個數(shù)的大小比較,可利用“數(shù)軸上兩個點表示的數(shù),右邊的總比左邊的大”這一性質進行比較.探究點四:點在數(shù)軸上的移動問題點A為數(shù)軸上表示-2的動點,當點A沿數(shù)軸移動4個單位長度到點B時,點B所表示的有理數(shù)為()A.2 B.-6C.2或-6 D.以上答案都不對解析:∵點A為數(shù)軸上表示-2的動點,①當點A沿數(shù)軸向左移動4個單位長度時,點B所表示的有理數(shù)為-6;②當點A沿數(shù)軸向右移動4個單位長度時,點B所表示的有理數(shù)為2.故選C.方法總結:點A在數(shù)軸上移動要注意分兩種情況:一個向左,一個向右,不要漏掉其中的一種情況.

一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.

【類型一】 逆用積的乘方進行簡便運算計算:(23)2014×(32)2015.解析:將(32)2015轉化為(32)2014×32,再逆用積的乘方公式進行計算.解:原式=(23)2014×(32)2014×32=(23×32)2014×32=32.方法總結:對公式an·bn=(ab)n要靈活運用,對于不符合公式的形式,要通過恒等變形轉化為公式的形式,運用此公式可進行簡便運算.【類型二】 逆用積的乘方比較數(shù)的大小試比較大?。?13×310與210×312.解:∵213×310=23×(2×3)10,210×312=32×(2×3)10,又∵23<32,∴213×310<210×312.方法總結:利用積的乘方,轉化成同底數(shù)的同指數(shù)冪是解答此類問題的關鍵.三、板書設計1.積的乘方法則:積的乘方等于各因式乘方的積.即(ab)n=anbn(n是正整數(shù)).2.積的乘方的運用在本節(jié)的教學過程中教師可以采用與前面相同的方式展開教學.教師在講解積的乘方公式的應用時,再補充講解積的乘方公式的逆運算:an·bn=(ab)n,同時教師為了提高學生的運算速度和應用能力,也可以補充講解:當n為奇數(shù)時,(-a)n=-an(n為正整數(shù));當n為偶數(shù)時,(-a)n=an(n為正整數(shù))

在探究估算方法的時候,教師要注重適時的引導,以免讓學生無從下手.在教學過程中一定要讓學生體會估算的實用價值,了解到“數(shù)學既來源與生活,又回歸到生活為生活服務”.(二)課堂評價的一些思考在教學中要多鼓勵學生用自己的語言表達他們的想法,在估算的過程中多給予適當?shù)囊龑Ш驮u價,讓學生逐步把握估算的方法,找到解決問題的信心.比如對“畫能掛上去嗎”這個問題情境,學生可能提出不同的看法,有些學生可能認為可以掛上去,因為人還有身高,完全可以彌補梯子穩(wěn)定擺放的高度和掛畫位置的高度之間的差距,有些學生可能認為,人不可能爬到梯子的頂部,加上人如果本來比較矮,畫就不能掛上去等等想法,教師都應該給予肯定,這樣才能激發(fā)學生思考問題的熱情,調動學生探究問題的積極性.作為教師,一定要尊重學生的個體差異,滿足多樣化的學習需要,鼓勵探究方式、表達方式和解題方法的多樣化.

方法總結:本題考查了冪的乘方的逆用及同底數(shù)冪的乘法,整體代入求解也比較關鍵.【類型三】 逆用冪的乘方結合方程思想求值已知221=8y+1,9y=3x-9,則代數(shù)式13x+12y的值為________.解析:由221=8y+1,9y=3x-9得221=23(y+1),32y=3x-9,則21=3(y+1),2y=x-9,解得x=21,y=6,故代數(shù)式13x+12y=7+3=10.故答案為10.方法總結:根據(jù)冪的乘方的逆運算進行轉化得到x和y的方程組,求出x、y,再計算代數(shù)式.三、板書設計1.冪的乘方法則:冪的乘方,底數(shù)不變,指數(shù)相乘.即(am)n=amn(m,n都是正整數(shù)).2.冪的乘方的運用冪的乘方公式的探究方式和前節(jié)類似,因此在教學中可以利用該優(yōu)勢展開教學,在探究過程中可以進一步發(fā)揮學生的主動性,盡可能地讓學生在已有知識的基礎上,通過自主探究,獲得冪的乘方運算的感性認識,進而理解運算法則

解析:(1)根據(jù)表中信息,用優(yōu)等品頻數(shù)m除以抽取的籃球數(shù)n即可;(2)根據(jù)表中數(shù)據(jù),優(yōu)等品頻率為0.94,0.95,0.93,0.94,0.94,穩(wěn)定在0.94左右,即可估計這批籃球優(yōu)等品的概率.解:(1)570600=0.95,744800=0.93,9401000=0.94,11281200=0.94,故表中依次填0.95,0.93,0.94,0.94; (2)這批籃球優(yōu)等品的概率估計值是0.94.三、板書設計1.頻率及其穩(wěn)定性:在大量重復試驗的情況下,事件的頻率會呈現(xiàn)穩(wěn)定性,即頻率會在一個常數(shù)附近擺動.隨著試驗次數(shù)的增加,擺動的幅度有越來越小的趨勢.2.用頻率估計概率:一般地,在大量重復實驗下,隨機事件A發(fā)生的頻率會穩(wěn)定到某一個常數(shù)p,于是,我們用p這個常數(shù)表示隨機事件A發(fā)生的概率,即P(A)=p.教學過程中,學生通過對比頻率與概率的區(qū)別,體會到兩者間的聯(lián)系,從而運用其解決實際生活中遇到的問題,使學生感受到數(shù)學與生活的緊密聯(lián)系
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。