
【類型二】 分式的約分約分:(1)-5a5bc325a3bc4;(2)x2-2xyx3-4x2y+4xy2.解析:先找分子、分母的公因式,然后根據(jù)分式的基本性質把公因式約去.解:(1)-5a5bc325a3bc4=5a3bc3(-a2)5a3bc3·5c=-a25c;(2)x2-2xyx3-4x2y+4xy2=x(x-2y)x(x-2y)2=1x-2y.方法總結:約分的步驟;(1)找公因式.當分子、分母是多項式時應先分解因式;(2)約去分子、分母的公因式.三、板書設計1.分式的基本性質:分式的分子與分母都乘以(或除以)同一個不為零的整式,分式的值不變.2.符號法則:分式的分子、分母及分式本身,任意改變其中兩個符號,分式的值不變;若只改變其中一個符號或三個全變號,則分式的值變成原分式值的相反數(shù).本節(jié)課的流程比較順暢,先探究分式的基本性質,然后順勢探究分式變號法則.在每個活動中,都設計了具有啟發(fā)性的問題,對各個知識點進行分析、歸納總結、例題示范、方法指導和變式練習.一步一步的來完成既定目標.整個學習過程輕松、愉快、和諧、高效.

解析:由分式有意義的條件得3x-1≠0,解得x≠13.則分式無意義的條件是x=13,故選C.方法總結:分式無意義的條件是分母等于0.【類型三】 分式值為0的條件若使分式x2-1x+1的值為零,則x的值為()A.-1 B.1或-1C.1 D.1和-1解析:由題意得x2-1=0且x+1≠0,解得x=1,故選C.方法總結:分式的值為零的條件:(1)分子為0;(2)分母不為0.這兩個條件缺一不可.三、板書設計1.分式的概念:一般地,如果A、B表示兩個整式,并且B中含有字母,那么式子AB叫做分式.2.分式AB有無意義的條件:當B≠0時,分式有意義;當B=0時,分式無意義.3.分式AB值為0的條件:當A=0,B≠0時,分式的值為0.本節(jié)采取的教學方法是引導學生獨立思考、小組合作,完成對分式概念及意義的自主探索.提出問題讓學生解決,問題由易到難,層層深入,既復習了舊知識又在類比過程中獲得了解決新知識的途徑.在這一環(huán)節(jié)提問應注意循序性,先易后難、由簡到繁、層層遞進,臺階式的提問使問題解決水到渠成.

探究點二:列分式方程某工廠生產一種零件,計劃在20天內完成,若每天多生產4個,則15天完成且還多生產10個.設原計劃每天生產x個,根據(jù)題意可列分式方程為()A.20x+10x+4=15 B.20x-10x+4=15C.20x+10x-4=15 D.20x-10x-4=15解析:設原計劃每天生產x個,則實際每天生產(x+4)個,根據(jù)題意可得等量關系:(原計劃20天生產的零件個數(shù)+10個)÷實際每天生產的零件個數(shù)=15天,根據(jù)等量關系列出方程即可.設原計劃每天生產x個,則實際每天生產(x+4)個,根據(jù)題意得20x+10x+4=15.故選A.方法總結:此題主要考查了由實際問題抽象出分式方程,關鍵是正確理解題意,找出題目中的等量關系,列出方程.三、板書設計1.分式方程的概念2.列分式方程本課時的教學以學生自主探究為主,通過參與學習的過程,讓學生感受知識的形成與應用的價值,增強學習的自覺性,體驗類比學習思想的重要性,然后結合生活實際,發(fā)現(xiàn)數(shù)學知識在生活中的廣泛應用,感受數(shù)學之美.

【類型三】 分式方程無解,求字母的值若關于x的分式方程2x-2+mxx2-4=3x+2無解,求m的值.解析:先把分式方程化為整式方程,再分兩種情況討論求解:一元一次方程無解與分式方程有增根.解:方程兩邊都乘以(x+2)(x-2),得2(x+2)+mx=3(x-2),即(m-1)x=-10.①當m-1=0時,此方程無解,此時m=1;②方程有增根,則x=2或x=-2,當x=2時,代入(m-1)x=-10得(m-1)×2=-10,m=-4;當x=-2時,代入(m-1)x=-10得(m-1)×(-2)=-10,解得m=6,∴m的值是1,-4或6.方法總結:分式方程無解與分式方程有增根所表達的意義是不一樣的.分式方程有增根僅僅針對使最簡公分母為0的數(shù),分式方程無解不但包括使最簡公分母為0的數(shù),而且還包括分式方程化為整式方程后,使整式方程無解的數(shù).三、板書設計1.分式方程的解法方程兩邊同乘以最簡公分母,化為整式方程求解,再檢驗.2.分式方程的增根(1)解分式方程為什么會產生增根;(2)分式方程檢驗的方法.

解析:(1)先把第二個分式的分母y-x化為-(x-y),再把分子相加減,分母不變;(2)先把第二個分式的分母a-b化為-(b-a),再把分子相加減,分母不變.解:(1)原式=2x2-3y2x-y-x2-2y2x-y=2x2-3y2-(x2-2y2)x-y=x2-y2x-y=(x+y)(x-y)x-y=x+y;(2)原式=2a+3bb-a-2bb-a-3bb-a=2a+3b-2b-3bb-a=2a-2bb-a=-2(b-a)b-a=-2.方法總結:分式的分母互為相反數(shù)時,可以把其中一個分母放到帶有負號的括號內,把分母化為完全相同.再根據(jù)同分母分式相加減的法則進行運算.三、板書設計1.同分母分式加減法法則:fg±hg=f±hg.2.分式的符號法則:fg=-f-g,-fg=f-g=-fg.本節(jié)課通過同分母分數(shù)的加減法類比得出同分母分式的加減法.易錯點一是符號,二是結果的化簡.在教學中,讓學生參與課堂探究,進行自主歸納,并對易錯點加強練習.從而讓學生對知識的理解從感性認識上升到理性認識.

(3)∵AD=4,DE=1,∴AE=42+12=17.∵對應點到旋轉中心的距離相等且F是E的對應點,∴AF=AE=17.(4)∵∠EAF=90°(旋轉角相等)且AF=AE,∴△EAF是等腰直角三角形.【類型二】 旋轉的性質的運用如圖,點E是正方形ABCD內一點,連接AE、BE、CE,將△ABE繞點B順時針旋轉90°到△CBE′的位置.若AE=1,BE=2,CE=3則∠BE′C=________度.解析:連接EE′,由旋轉性質知BE=BE′,∠EBE′=90°,∴△BEE′為等腰直角三角形且∠EE′B=45°,EE′=22.在△EE′C中,EE′=22,E′C=1,EC=3,由勾股定理逆定理可知∠EE′C=90°,∴∠BE′C=∠BE′E+∠EE′C=135°.三、板書設計1.旋轉的概念將一個圖形繞一個頂點按照某個方向轉動一個角度,這樣的圖形運動稱為旋轉.2.旋轉的性質一個圖形和它經過旋轉所得的圖形中,對應點到旋轉中心的距離相等,任意一組對應點與旋轉中心的連線所成的角都等于旋轉角,對應線段相等,對應角相等.

首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數(shù)值計算,去求出圖形中的某些邊的長度或角的大?。诜治鰡栴}時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點

方法總結:觀察表中的數(shù)據(jù),發(fā)現(xiàn)其中的變化規(guī)律,然后根據(jù)其增減趨勢寫出自變量與因變量之間的關系式.三、板書設計1.用關系式表示變量間關系2.表格和關系式的區(qū)別與聯(lián)系:表格能直接得到某些具體的對應值,但不能直接反映變量的整體變化情況;用關系式表示變量之間的關系簡單明了,便于計算分析,能方便求出自變量為任意一個值時,相對應的因變量的值,但是需計算.本節(jié)課的教學內容是變量間關系的另一種表示方法,這種表示方法學生才接觸到,學生感覺有點難.這節(jié)課的重點是讓學生掌握用關系式與表格表示變量間的關系,難點是理解這兩種表示方法的優(yōu)缺點.就此問題,通過讓學生對幾個例子比較、討論、總結、歸納兩種方法的優(yōu)點來解決,這樣學生就能很好地區(qū)分這兩種表示方法,并能對不同的問題選擇恰當?shù)姆椒?/p>

解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現(xiàn)產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

準備:老爺爺、老婆婆、小孫女的服飾;大蘿卜服飾;小狗、小貓、小耗子頭飾;活動圖片一套 活動與指導:1、教師邊演示圖片邊講述故事。2、討論:⑴老公公一個人拔蘿卜,為什么拔不出來?⑵最后通過什么方法拔出了大蘿卜?這個故事說明了什么道理?3、游戲:請幼兒分別穿上故事人物的服飾,戴上故事人物的頭飾進行故事表演。4、提示:在活動中注意引導幼兒正確地說出“小耗子拉著小花貓,小花貓拉著小狗兒,小狗兒拉著小孫女,小孫女拉著老婆婆,老婆婆拉著老公公,老公公拉著蘿卜葉子?!编藛?,嗨喲“拔呀拔,終于拔出了蘿卜。

(1) 美育目標:通過引導學生初步認識人與自然的關系,激發(fā)學生熱愛自然,保護綠色生命的情感。(2) 知識目標:鼓勵學生大膽地、有個性的用自編故事、繪畫方式等去表達對大樹的情感。(3) 能力目標:通過本課的學習,培養(yǎng)學生的想象能力、兒童畫創(chuàng)作能力、語言表達能力等。

一、教學內容:兩位數(shù)減一位數(shù)和整十數(shù)(不退位)(課本第67頁)。二、教學目標:1、知識與技能:讓學生經歷探索兩位數(shù)減一位數(shù)和整十數(shù)(不退位)的計算方法的過程,掌握計算方法,能正確地口算。2、過程與方法:讓學生經歷自主探索、動手操作、合作交流等方式獲得新知的過程,積累數(shù)學活動的經驗,體會數(shù)學知識與日常生活的密切聯(lián)系,增強應用意識。3、情感態(tài)度與價值觀:進一步培養(yǎng)學生學習數(shù)學的熱情,以及積極思考、動手實踐并與同學合作學習的態(tài)度。三、教學重點:掌握兩位數(shù)減一位數(shù)和整十數(shù)(不退位)的口算方法。四、教學難點:理解算理,把握兩位數(shù)減一位數(shù)與兩位數(shù)減整十位數(shù)在計算過程中的相同點與不同點。五、教具準備:課件、題卡、等。六、教學過程:(一)、創(chuàng)設情境,提出問題。

2.送信。實物投影儀演示反饋。(1)方法說明。你是怎么想的?(2)錯誤糾正。分層校對:做完的先互相批改,然后集體先校對丁當組題,再校對一休組題。重點講評一休組題目。六、總結今天你有哪些收獲?(1)退位減法要注意什么?不要忘記退位。(2)退位減法的方法。為學生提供學習材料,讓學生通過活動聯(lián)系生活實際學習新知,讓學生感受到數(shù)學源于生活,用于生活;采用分層教學,整個學習過程都是學生在小組中合作研究、探索中完成的;然后通過多種形式的練習加以鞏固;注重學習過程的開放;通過小組合作,培養(yǎng)學生善于發(fā)表自己的觀點,會傾聽同學的意見的能力。同時也培養(yǎng)學生學會提出問題、解決問題的能力。

本課內容是普通學校教材,主要針對的是普通學校學生,主要包括了四個知識點,第一個問題由撥計數(shù)器的情境出發(fā),從序數(shù)的角度,由千以內的數(shù)和一千之間的關系引出對“千”的認識。第二個問題結合拼擺小方塊的活動,體會“個”、“十”、“百”、“千”之間的十進關系,直觀感受“千”的大小。第三個問題就是結合數(shù)數(shù)活動進一步感受“千”的意義,掌握三位數(shù)的數(shù)數(shù)方法。第四就是安排的“試一試”,集合估計和對比想象的活動,發(fā)展學生的數(shù)感。針對普通學生這是2課時的內容,第一課時安排解決前三個問題,這對于我們聽障學生來說課時容量太大,另外今天是微課只有30分鐘,尤其是第三個問題數(shù)數(shù)更是難點,遇到9加1變十、99加1變百、999加1變千時的轉化更是難點,所以本節(jié)課我只安排了第一和第二個問題,并且在教學第一個問題“千”的引入中加入“9加1變十、99加1變百、999加1變千”的內容,為學生下節(jié)課學習數(shù)數(shù)分散了難點,提前做好了鋪墊。

二、學情分析本單元是在學生已經學習了整數(shù)除法、分數(shù)乘法的基礎上進行教學的,是小學階段四則運算中最后一部分的內容。學生學習了整數(shù)、小數(shù)的四則運算,而分數(shù)只學習了加法、減法和乘法,因此對于學習分數(shù)除法有一定的認知需求,安排分數(shù)除法教學符合學生的認知發(fā)展特點。通過整數(shù)除法、分數(shù)乘法的學習,學生對計算的學習有一定的經驗,并具有一定的解決問題的能力,這時候進行分數(shù)除法教學,學生有能力將原有的計算方法和經驗進行遷移。學生在學習分數(shù)乘法時,已經掌握了一些解決分數(shù)乘法問題的方法,這時候進行分數(shù)除法教學可以促進知識之間的聯(lián)系,提高學生分析問題和解決問題的能力。教師在教學時,應充分利用資源,激活學生已有的知識經驗,引導他們展開類比思維,以促進學習的正向遷移。三、教學目標根據(jù)新課標的要求和教材的特點,結合五年級學生的認知能力,本節(jié)課我確定如下的教學目標:

[此環(huán)節(jié)的設計意圖是利用情景激發(fā)學生探究的欲望,讓學生帶著輕松、愉悅的心情投入到新知的學習中。](二)自主探究感悟新知教育心理學告訴我們,學生應當有足夠的時間和空間經歷觀察、實驗、猜測、計算、推理、驗證等活動過程。(在兒童的學習活動中,興趣起著定向和動力功能的雙重作用。)以這一理論為指導,我設計了以下三個層次漸深的活動,大膽放手讓學生自主探究,從而突出重點、突破難點?;顒右唬豪斫夥謹?shù)乘整數(shù)的意義。讓學生通過折一折的活動自主計算,并歸納整理出學生的三計算方法:①根據(jù)分數(shù)的意義數(shù)一數(shù)是3/5;②加法計算1/5+1/5+1/5=3/5;③乘法計算3*1/5=3/5,展示在黑板上,引導學生通過觀察對比發(fā)現(xiàn),其實3*1/5就是3個1/5相加,由此感知到分數(shù)乘整數(shù)的意義與整數(shù)乘法的意義相同,只是這里的相同加數(shù)變成了分數(shù)。

本環(huán)節(jié)我依據(jù)教學目標和學生對知識的掌握情況,我設計了有針對性、層次分明的練習題(基本題、變式題、拓展題),讓學生在解決這些問題的過程中,進一步理解,鞏固新知,訓練思維的靈活性,使學生的探索精神和實踐能力得到進一步的提高。[本環(huán)節(jié)的設計意圖:通過多層次的練習,激發(fā)學生的學習興趣,調動學生學習的積極性和主動性,使學生獲得愉悅的情感體驗。同時使學生的知識結構更加完善。]第四環(huán)節(jié):課堂小結在輕松愉快的學習活動結束后,我會與學生進行總結對話“這節(jié)課你有什么收獲?你學會了什么?還有什么不懂得地方嗎?”學生充分發(fā)言,交流自己的學習心得。[本環(huán)節(jié)的設計意圖:幫助學生梳理知識,整理本課的知識要點,完成本節(jié)課的教學活動。]

教學重點:體驗1分時間的長短,建立一分鐘的概念。教學難點:估計一分鐘有多長學情分析本班學生對時分的知識在一年級已經有了一個初步的認識。能區(qū)分時針、分針和秒針;能初步認識鐘面上的整點、半點;但是整點剛過和接近整點學生區(qū)分還有困難。二、說學生本節(jié)課的教學對象是二年級的學生,他們生活經驗少,但思維比較活躍,他們還是以無意注意為主,而無意注意是由刺激物的特點引起的,在教學時,盡可能創(chuàng)設生動的數(shù)學活動,密切數(shù)學與生活的聯(lián)系,使知識變成學生的切身需要,使他們在玩中學,在動中求知,通過操作交流去探索創(chuàng)新。三、說教學法在教材的處理上,我聯(lián)系生活實際,用靈活多變的活動激發(fā)學生的學習情感,充分放手讓學生大量開展多種形式有趣的實踐活動,開放的情境,引導學生體驗。使學生較好的認識一分并且對于一分能干什么也會有深刻的認識。

5. 作業(yè): 作業(yè)我同樣選取不同題型的五個計算題,目的是想查看學生學的效果如何,是否對哪類題型還留有疑問。 6. 自我評價: 這堂課我覺得滿意的,是能夠利用短暫的45分鐘把要學的知識穿插在學與練當中,充分地利用了課堂有限的時間,并且能讓學生邊學邊練,及時鞏固。 當然這堂課也有很多不足之處,我覺得自己對于課堂上學生做練習時出現(xiàn)的一些小問題處理還沒有能夠處理得很好,我應該吸取經驗教訓,再以后的教學中加以改進。 另外對于多個有理數(shù)相乘時的符號問題,我覺得自己歸納得還不是很到位,我想解決的辦法是在以后的練習中再做些補充,讓學生加深理解。從中我也得到一個教訓,再以后的教學工作中,我還應該多學習教學方法,多思考如何歸納知識點,才能更好地幫學生形成一個系統(tǒng)的知識系統(tǒng)!
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。