
首先請學生分析:過B、C作梯形ABCD的高,將梯形分割成兩個直角三角形和一個矩形來解.教師可請一名同學上黑板板書,其他學生筆答此題.教師在巡視中為個別學生解開疑點,查漏補缺.解:作BE⊥AD,CF⊥AD,垂足分別為E、F,則BE=23m.在Rt△ABE中,∴AB=2BE=46(m).∴FD=CF=23(m).答:斜坡AB長46m,坡角α等于30°,壩底寬AD約為68.8m.引導全體同學通過評價黑板上的板演,總結解坡度問題需要注意的問題:①適當添加輔助線,將梯形分割為直角三角形和矩形.③計算中盡量選擇較簡便、直接的關系式加以計算.三、課堂小結:請學生總結:解直角三角形時,運用直角三角形有關知識,通過數值計算,去求出圖形中的某些邊的長度或角的大小.在分析問題時,最好畫出幾何圖形,按照圖中的邊角之間的關系進行計算.這樣可以幫助思考、防止出錯.四、布置作業(yè)

解析:正多邊形的邊心距、半徑、邊長的一半正好構成直角三角形,根據勾股定理就可以求解.解:(1)設正三角形ABC的中心為O,BC切⊙O于點D,連接OB、OD,則OD⊥BC,BD=DC=a.則S圓環(huán)=π·OB2-π·OD2=πOB2-OD2=π·BD2=πa2;(2)只需測出弦BC(或AC,AB)的長;(3)結果一樣,即S圓環(huán)=πa2;(4)S圓環(huán)=πa2.方法總結:正多邊形的計算,一般是過中心作邊的垂線,連接半徑,把內切圓半徑、外接圓半徑、邊心距,中心角之間的計算轉化為解直角三角形.變式訓練:見《學練優(yōu)》本課時練習“課后鞏固提升”第4題【類型四】 圓內接正多邊形的實際運用如圖①,有一個寶塔,它的地基邊緣是周長為26m的正五邊形ABCDE(如圖②),點O為中心(下列各題結果精確到0.1m).(1)求地基的中心到邊緣的距離;(2)已知塔的墻體寬為1m,現要在塔的底層中心建一圓形底座的塑像,并且留出最窄處為1.6m的觀光通道,問塑像底座的半徑最大是多少?

三、關于課本素材的處理課本素材:“雞兔同籠”和“以繩測井”兩個古代趣味問題??紤]到八年級學生獨立思考和探索問題的能力都已達到一定的水平,特別增加了“自主探索,分層推進”這一環(huán)節(jié),為每一位學生都提供了發(fā)展的空間。同時師生之間、學生之間共同研討,形成教與學的和諧統(tǒng)一。凡能列二元一次方程組解決的問題,一般都可列一元一次方程來解,這就影響了用方程組去分析和解決問題,使學生形成思維定勢。為此通過對“雞兔同籠”多種求解方法的分析,使學生經歷知識的發(fā)生過程,認識到列方程組的必要性和優(yōu)越性,從而解決學生的思維定勢的束縛。 以上是我對《雞兔同籠》這一節(jié)課的一點思考,希望各位專家和老師指正,最后,我用布魯克菲爾德的一句話來結束我的發(fā)言:讓學生學會討論、合作交流,討論會使學生成為知識的共同創(chuàng)造者!

4、鞏固新知,拓展新知(羊羊競技場)本環(huán)節(jié)在學生對性質基本熟悉后安排了四組訓練題,為避免學生應用性質的粗糙感,以小羊展開競技表演為背景,讓學生在輕松愉快的氛圍中層層遞進,不斷深入,達到強化性質,拓展性質的目的。提高學生的辨別力;進一步增強學生運用性質解決問題的能力;訓練學生的逆向思維能力,增強學生應變能力和解題靈活性.5、提煉小結完善結構(羊羊總結會)“通過本節(jié)課的學習,你在知識上有哪些收獲,你學到了哪些方法?”引導學生自主總結。設計意圖:使學生對本節(jié)課所學知識的結構有一個清晰的認識,能抓住重點進行課后復習。以及通過對學習過程的反思,掌握學習與研究的方法,學會學習,學會思考。6、課堂檢測,發(fā)展?jié)撃埽ù髴?zhàn)灰太狼)

設計意圖:知識的掌握需要由淺到深,由易到難.我所設計的三個例題難度依次上升,根據由簡到難的原則,先讓學生學會熟悉選用公式,再進一步到公式的變形應用,鞏固知識.特別是第三題特別強調了運用法則的前提:必需要底數相同.為加深學生對法則的理解記憶,形成“學以致用”的思想.同時為了調動學生思考,接下來讓學生進入反饋練習階段,進一步鞏固記憶.4、知識反饋,提高反思練習1(1)口答設計意圖:根據夸美紐斯的教學鞏固性原則,為了培養(yǎng)學生獨立解決問題的能力,在例題講解后,通過讓個別同學上黑板演演,其余同學在草稿本上完成練習的方式來掌握學生的學習情況,從而對講解內容作適當的補充提醒.同時,在活動中引起學生的好奇心和強烈的求知欲,在獲得經驗和策略的同時,獲得良好的情感體驗.

經過探究發(fā)現只有10與11出現的概率最大且相等(在探究的過程中提醒學生按求等可能性事件的概率步驟來做,在判斷是否等可能和求某個事件的基本數上多啟發(fā)和引導,幫助學生順利突破難點。)及時表揚答對的學生,因為這個問題整整過了三個世紀,才被意大利著名的天文學家伽利略解決。后來法國數學家拉普拉斯在他的著作《分析概率論》中,把伽利略的這個解答作為概率的一個基本原理來引用。(適當的滲透一些數學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的)8、課堂小結:通過這節(jié)課的學習,同學們回想一下有什么收獲?1、基本事件和等可能性事件的定義。2、等可能性事件的特征:(1)、一次試驗中有可能出現的結果是有限的。(2)、每一結果出現的可能性相等。3、求等可能性事件概率的步驟:(1)審清題意,判斷本試驗是否為等可能性事件。

(3)例題1的設計,一方面是幫助學生從生實際問題背景中逐步建立古典概型的解題模式;另一方面也可進一步理解古典概型的概念與特征,重點突破“等可能性”這個理解的難點。 采用學生分組討論的方式完。在整個活動中學生作為活動設計者、參與者.主持者;老師起到組織和指導的作用。為了讓學生進一步認識和理解隨機思想,認識和理解概率的含義—概率是一種度量,是對隨機事件發(fā)生可能性大小的一種度量.讓學生觀察圖表,得出對稱的規(guī)律。預計學生在構建等可能性事件模型時要花一些時間。(4)例題1的拓展設計:看學生能否能在例1的基礎上利用類比的思想來建構數學模型,并得出求事件 A包含的基本事件數常用的方法有樹狀圖法,枚舉法,圖表法,排列組合法等方法。適當的滲透一些數學史,學生對學習的興趣更濃厚,可以激發(fā)學生課后去進一步的探究前輩們是如何從不考慮順序到想到考慮順序的

一、教材分析1.教材的地位與作用本節(jié)課是在學生學習了三角形的基本概念后,引入圖形的全等。這節(jié)課探究對象是生活中的常見全等圖形,主要是探究全等圖形的概念和特征,通過系列學習活動,引導學生體驗數學與生活的密切聯系,激發(fā)學生學習數學的興趣,培養(yǎng)良好的學習品質。同時這節(jié)課的內容也是下一節(jié)學習全等三角以及三角形全等的判定的奠基石,它對知識的聯系起到承上啟下的作用。2.教學目標依據《課程標準》要求本階段的學生應初步會運用數學的思維方式去觀察、分析現實生活中出現的實際問題,體會數學與生活的密切聯系,增進對數學的理解和學好數學的信心。因此我確立本節(jié)課的教學目標如下:知識技能目標:通過實例,使學生理解圖形全等的概念,掌握全等圖形的特征,能在不同的圖形中識別出全等的圖形過程與方法:通過觀察,動手實驗,培養(yǎng)學生動手操作能力、觀察能力以及合作與交流的能力

練習3、先化簡,再求值:2a(a-b)-b(2a-b)+2ab,其中a=2,b=-3.(通過例題和聯系將所學知識升華,提升)練習4、動動腦。(讓學生進一步感知生活中處處有數學)(四)、暢談收獲、拓展升華1、本節(jié)課你學到了什么?依據是什么?整式的乘法存在什么沒有解決的問題?(同桌互講,師生共同小結)2、布置作業(yè):習題1.9知識技能1四、說課小結本堂課我主要采用引導探索法教學,倡導學生自主學習、嘗試學習、探究學習、合作交流學習,鼓勵學生用所學的知識解決身邊的問題,注重教學效果的有效性。學生在合作學習中,可以活躍課堂氣氛,消除心理壓力,在愉快的環(huán)境中學習知識,有效地拓展學生思維,成功地培養(yǎng)學生的觀察能力、思維能力、合作探究能力、交流能力和數學學習能力。但由于本人對新課標和新教材的理解不一定十分到位,所以在教材本身內在規(guī)律的把握上,會存在一定的偏差;另外,由于對學生的認知規(guī)律認識不夠,所以教學活動的設計不一定十分有效。所有這些都有待教學實踐的檢驗。

教學不應僅僅傳授課本上的知識內容,而應該在傳授知識內容的同時,注意對學生綜合能力的培養(yǎng).在本節(jié)課中,教師并沒有直接將運算法則告訴學生,而是由學生利用已有知識探究得到.在探究過程中,學生的數學思想得到了進一步的拓展,學生的綜合能力得到了進一步的提高.當然一節(jié)課的提高并不顯著,但只要堅持這種方式方法,最終會有一個美好的結果.2.充分挖掘知識內涵,使學生體會數學知識間的密切聯系在教學中,有意識、有計劃的設計教學活動,引導學生體會單項式乘法與單項式除法之間的聯系與區(qū)別,感受數學的整體性,不斷豐富學生的解題策略,提高解決問題的能力.3.課堂上應當把更多的時間留給學生在課堂教學中應當把更多時間交給學生.本節(jié)課中計算法則的探究,例題的講解,習題的完成,知識的總結盡可能的全部由學生完成,教師所起的作用是點撥,評價和指導.這樣做,可以更好的體現以學生為中心的教學思想,能更好的提高學生的綜合能力.

教學說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應用的例子。要解決問題(3),只需要在四邊形中構建出三角形結構,這樣就可以幫助其穩(wěn)定。設計意圖:通過學生動手操作,探究三角形穩(wěn)定性及生活中的應用,讓學生體驗數學來源于生活,服務于生活的辯證思想,感受數學美。 (五)總結反思,情意發(fā)展問題:通過這節(jié)課的學習你有什么收獲?多媒體演示:(1)知識方面:①三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應用。

(1)上午9時的溫度是多少?12時呢?(2)這一天的最高溫度是多少?是在幾時達到的?最低溫度呢?(3)這一天的溫差是多少?從最高溫度到最低溫度經過了多長時間?(4)在什么時間范圍內溫度在上升?在什么時間范圍內溫度在下降?(5)圖中的A點表示的是什么?B點呢?(6)你能預測次日凌晨1時的溫度嗎?說說你的理由.2、議一議:駱駝被稱為“沙漠之舟”,你知道關于駱駝的一些趣事嗎?例:它的體溫隨時間的變化而發(fā)生較大的變化:白天,隨沙漠溫度的驟升,駱駝的體溫也升高,當體溫達到40℃時,駱駝開始出汗,體溫也開始下降.夜間,沙漠的溫度急劇降低,駱駝的體溫也繼續(xù)降低,大約在凌晨4時,駱駝的體溫達到最低點.3、如下圖,是駱駝的體溫隨時間變化而變化的的關系圖,據圖回答下列問題:

1.要創(chuàng)造性的使用教材,不拘泥于教材的形式。教材為學生的學習活動提供了基本線索,實施新課程目標、實施教學的重要資源。在教學中要創(chuàng)造性地使用教材。本節(jié)課教師通過具體的現實情境,充分利用學生的生活經驗,讓學生體驗到數學來源于生活,打破了傳統(tǒng)的注入式的教學模式,通過一系列精心設計把它改成學生所經歷的情境引入課題,激發(fā)了學生的學習興趣。在教學中引導學生進行“猜想一實驗一分析一交流一發(fā)現一應用”, 學生在操作、思考、交流中不斷地發(fā)現問題,解決問題,極大地調動了學生的學習的積極性,讓學生嘗到了成功的喜悅,激發(fā)了學生的發(fā)現思維的火花,經歷了一番前人發(fā)現這個結果的“濃縮”過程,從而培養(yǎng)了學生獨立探究和解決問題的能力。2. 相信學生并為學生提供充分展示自己的機會通過課堂上小組合作擲硬幣試驗、并展示試驗結果的過程,為學生提供展示自己聰明才智的機會,并且在此過程中更利于教師發(fā)現學生分析問題解決問題的獨到見解,以及思維的誤區(qū),以便指導今后的教學。

一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數,一個是水的多少?師: 它們的變化有什么聯系嗎?生3:有,隨著喝的口數的增加,瓶中的水越來越少.生4:那我的這張紙越撕越?。ù藭r該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數,另一個是紙的大小.師:那么哪個量隨哪個量的變化而變化的呢?

今天我說課的內容是六年級上冊第一單元的例6、例7《整數乘法運算定律推廣到分數》,我的設計理念是從學生已有的生活經驗出發(fā),創(chuàng)設情境、激發(fā)興趣、建構知識、發(fā)展思維。下面我從教材、教法和學法、教學過程、教學反思四個方面來對本課進行闡述。一、 說教材1、教材分析:“整數乘法運算定律推廣到分數乘法”是在學生已經掌握了分數乘法計算、整數乘法運算定律、整數乘法運算定律推廣到小數乘法的基礎上進行教學的。教材從生活入手,通過幾組算式,讓學生計算出○的左右兩邊算式的得數,找出它們的相等關系,總結出整數的運算定律對分數同樣適用。學好這部分內容,不僅培養(yǎng)學生的邏輯思維能力,而且以后能用本課所學的使一些分數的計算簡便,也為以后學習用不同方法解答應用題起著積極的推動作用。

一、說教材《分式的加減法》是本冊教材第三章《分式》重要內容,是進一步學習分式方程、反比例函數以及其它數學知識的基礎,同時也是學習物理、化學等學科不可缺少的工具。與其它數學知識一樣,它在實際生活中有著廣泛的應用。學習分式的加減法并熟練地進行運算是學好分式運算的關鍵,為學生綜合運用多種運算法則拓寬了空間,有利于學生對雙基的掌握,在綜合運用多種運算法則的過程中,逐漸形成運算能力。同時本節(jié)課的教學難度有所增加,學生通過觀察、類比、猜想、嘗試等一系列思維活動中,發(fā)現規(guī)則、理解規(guī)則、應用規(guī)則??紤]到以上這些因素,確定本節(jié)課的目標和重點、難點如下:(一)說教學目標:1.知識與技能目標:理解并掌握異分母分式加減法的法則;經歷異分母分式的加減運算和通分的過程,訓練學生的分式運算能力,培養(yǎng)學生在學習中轉化未知問題為已知問題的能力;進一步通過實例發(fā)展學生的符號感。

問題6:觀察剛才所畫的圖象我們發(fā)現反比例函數的圖象有兩個分支,那么它的分布情況又是怎么樣的呢?在這一環(huán)節(jié)中的設計:(1) 引導學生對比正比例函數圖象的分布,啟發(fā)他們主動探索反比例函數的分布情況,給學生充分考慮的時間;(2) 充分運用多媒體的優(yōu)勢進行教學,使用函數圖象的課件試著任意輸入幾個k的值,觀察函數圖象的不同分布,觀察函數圖象的動態(tài)演變過程。把不同的函數圖象集中到一個屏幕中,便于學生對比和探究。學生通過觀察及對比,對反比例函數圖象的分布與k的關系有一個直觀的了解;(3) 組織小組討論來歸納出反比例函數的一條性質:當k>0時,函數圖象的兩支分別在第一、三象限內;當k<0時,函數圖象的兩支分別在第二、四象限內。

說教學難點:圖形的放大與縮小的原理是“大小改變,形狀不變“。針對小學生的年齡和認知特點,教材中“圖形的放大與縮小”從對應邊的比相等來進行安排,而對應角的不變也是形狀不變必備的條件,是學生體會圖形的相似所必需的。學生在學習的過程中很有可能會質疑到這一問題。(為什么直角三角形只需要同時把兩條直角邊放大與縮???)所以我把“學生在觀察、比較、思考和交流等活動中,感受圖形放大、縮小,初步體會圖形的相似。(對應邊的比相等,對應角不變)”做為本節(jié)課的難點。說教法、學法:通過直觀演示,情景激趣,結合生活讓學生形成感性認識;引導學生經過觀察、猜想、分析、操作、質疑、小組交流、合作學習、驗證等過程形成理性認識。教學過程:(略)

(四)提高應用已知:在△ABC中,已知∠ACB=90°,CD⊥AB于D,請找出圖中的相似三角形,并說明理由。設計意圖:訓練學生靈活運用知識的能力(五)小結反思1.、相似三角形的判定方法一:如果一個三角形的兩個角分別與另一個三角形的兩個角對應相等,那么這兩個三角形相似. 2、在找對應角相等時要十分重視隱含條件,如公共角、對頂角、直角等. 3、掌握由平行線構造的兩類相似圖形:一類是A字型,另一類是X型. (回顧定理,強調兩個基本圖形,培養(yǎng)學生養(yǎng)成認真觀察,注意尋找圖形中的隱含信息的意識) 4、 常用的找對應角的方法:①已知角相等;②已知角度計算得出相等的對應角;③公共角;④對頂角;⑤同角的余(補)角相等.

準備200張卡片,在上面分別寫上1,2,3,…,200,將卡片裝入布袋里.第一次從布袋中盲目地取出一張,把號碼記下,這個號碼就算是消息的發(fā)布者,暫時不放回。第二次,從布袋中盲目取出三張,記下號碼,這算是第一批聽到消息的三個人,留一張暫時不放回(這張卡片代表下一次傳播消息的人),另兩張放回。把第一張卡片放回,然后第三次從布袋中盲目取三張卡片,記下號碼.這算是第二批聽到消息的三個人.留一張暫時不放回,其余兩張放回.把第二次摸出的并暫時留下的一張卡片收回,然后第四次從布袋中摸……看一下,15次后,有沒有被重復摸出的?上述消息傳播問題是很有實用價值的,比如,在醫(yī)療事業(yè)中,必須十分注意疾病的重復感染問題,因為傳染病的傳播就像消息傳播一樣,既然重復聽到消息的可能性是很大的,當然重復感染的可能性也是很大的。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。