
1.舉例說明什么時候用普查的方式獲得數(shù)據(jù)較好,什么時候用抽樣調(diào)查的方式獲得數(shù)據(jù)較好?2、下列調(diào)查中分別采用了那些調(diào)查方式?⑴為了了解你們班同學的身高,對全班同學進行調(diào)查.⑵為了了解你們學校學生對新教材的喜好情況,對所有學號是5的倍數(shù)的同學進行調(diào)查。3、說明在以下問題中,總體、個體、樣本各指什么?⑴為了考察一個學校的學生參加課外體育活動的情況,調(diào)查了其中20名學生每天參加課外體育活動的時間.⑵為了了解一批電池的壽命,從中抽取10只進行實驗。⑶為了考察某公園一年中每天進園的人數(shù),在其中的30天里對進園的人數(shù)進行了統(tǒng)計。通過本節(jié)課的學習,同學們有什么收獲和疑問?1、基本概念:⑴.調(diào)查、普查、抽樣調(diào)查.⑵.總體、個體、樣本.2、何時采用普查、何時采用抽樣調(diào)查,各有什么優(yōu)缺點?

(4)議一議:頻率與概率有什么區(qū)別和聯(lián)系?隨著重復實驗次數(shù)的不斷增加,頻率的變化趨勢如何?結(jié)論:從上面的試驗可以看到:當重復實驗的次數(shù)大量增加時,事件發(fā) 生的頻率就穩(wěn)定在相應的概率附近,因此,我們可以通過大量重復實驗,用一個事件發(fā)生的頻率來估計這一事件發(fā)生的概率。三、做一做:1.某運動員投籃5次, 投中4次,能否說該運動員投一次籃,投中的概率為4/5?為什么?2.回答下列問題:(1)抽檢1000件襯衣,其中不合格的襯衣有2件,由 此估計抽1件襯衣合格的概率是多少?(2)1998年,在美國密歇根州漢諾城市的一個農(nóng)場里出生了1頭白色的小奶牛,據(jù)統(tǒng)計,平均出生1千萬頭牛才會有1頭是白色的,由此估計出生一頭奶牛為白色的概率為多少?

在Rt△ABC中,AC=AB2+BC2=12+12=2(cm),∴FC=AC-AF=2-1(cm),∴BE=2-1(cm).方法總結(jié):正方形被對角線分成4個等腰直角三角形,因此在正方形中解決問題時常用到等腰三角形的性質(zhì)與直角三角形的性質(zhì).【類型三】 利用正方形的性質(zhì)證明線段相等如圖,已知過正方形ABCD的對角線BD上一點P,作PE⊥BC于點E,PF⊥CD于點F,求證:AP=EF.解析:由PE⊥BC,PF⊥CD知四邊形PECF為矩形,故有EF=PC,這時只需說明AP=CP,由正方形對角線互相垂直平分可知AP=CP.證明:連接AC,PC,如圖.∵四邊形ABCD為正方形,∴BD垂直平分AC,∴AP=CP.∵PE⊥BC,PF⊥CD,∠BCD=90°,∴四邊形PECF為矩形,∴PC=EF,∴AP=EF.方法總結(jié):(1)在正方形中,常利用對角線互相垂直平分證明線段相等;(2)無論是正方形還是矩形,經(jīng)常連接對角線,這樣可以使分散的條件集中.

方法總結(jié):對等式進行變形,必須在等式的兩邊同時進行,即同加或同減,同乘或同除,不能漏掉一邊,且同加或同減,同乘或同除的數(shù)必須相同.探究點二:利用等式的基本性質(zhì)解方程用等式的性質(zhì)解下列方程:(1)4x+7=3; (2)12x-13x=4.解析:(1)在等式的兩邊都減7,再在等式的兩邊都除以4,可得答案;(2)在等式的兩邊都乘以6,再合并同類項,可得答案.解:(1)方程兩邊都減7,得4x=-4.方程兩邊都除以4,得x=-1;(2)方程兩邊都乘以6,得3x-2x=24,x=24.方法總結(jié):解方程時,一般先將方程變形為ax=b的形式,然后再變形為x=c的形式.三、板書設計教學過程中,強調(diào)學生自主探索和合作交流,通過觀察、操作、歸納等數(shù)學活動,感受數(shù)學思想的條理性和數(shù)學結(jié)論的嚴密性.

方法總結(jié):平行線與角的大小關(guān)系、直線的位置關(guān)系是緊密聯(lián)系在一起的.由兩直線平行的位置關(guān)系得到兩個相關(guān)角的數(shù)量關(guān)系,從而得到相應角的度數(shù).探究點四:平行于同一條直線的兩直線平行如圖所示,AB∥CD.求證:∠B+∠BED+∠D=360°.解析:證明本題的關(guān)鍵是如何使平行線與要證的角發(fā)生聯(lián)系,顯然需作出輔助線,溝通已知和結(jié)論.已知AB∥CD,但沒有一條直線既與AB相交,又與CD相交,所以需要作輔助線構(gòu)造同位角、內(nèi)錯角或同旁內(nèi)角,但是又要保證原有條件和結(jié)論的完整性,所以需要過點E作AB的平行線.證明:如圖所示,過點E作EF∥AB,則有∠B+∠BEF=180°(兩直線平行,同旁內(nèi)角互補).又∵AB∥CD(已知),∴EF∥CD(如果兩條直線都和第三條直線平行,那么這兩條直線也互相平行),∴∠FED+∠D=180°(兩直線平行,同旁內(nèi)角互補).∴∠B+∠BEF+∠FED+∠D=180°+180°(等式的性質(zhì)),即∠B+∠BED+∠D=360°.方法總結(jié):過一點作一條直線或線段的平行線是我們常作的輔助線.

目的:課后作業(yè)設計包括了兩個層面:作業(yè)1是為了鞏固基礎知識而設計;作業(yè)2是為了擴展學生的知識面;拓廣知識,增加學生對數(shù)學問題本質(zhì)的思考而設計,通過此題可讓學生進一步運用三元一次方程組解決問題.教學設計反思1.本節(jié)課的內(nèi)容屬于選修學習的內(nèi)容,主要突出對數(shù)學興趣濃厚、學有余力的同學進一步探究和拓展使用,在數(shù)學方法和思想方面需重點引導,通過引導,使學生明白解多元方程組的一般方法和思想,理解鞏固環(huán)節(jié)需多注意多種解題方法的引導,并且比較各種解題方法之間的優(yōu)劣,總結(jié)出解多元方程的基本方法.2.作為選修課,在內(nèi)容上要讓學生理解三元一次方程組概念的同時,要讓學生理解為什么要用三元一次方程組甚至多元方程組去求解實際問題的必要性,從而掌握本堂課的基礎知識.在教學的過程中,要讓學生充分理解對復雜的實際問題方程中元越多,等量關(guān)系的建立就越直接;充分理解代入消元法和加減法解方程的優(yōu)點和缺點,有關(guān)這一方面的題目要讓學生充分討論、交流、合作,其理解才會深刻.

第三環(huán)節(jié):課堂小結(jié)活動內(nèi)容:1. 通過前面幾個題,你對列方程組解決實際問題的方法和步驟掌握的怎樣?2. 這里面應該注意的是什么?關(guān)鍵是什么?3. 通過今天的學習,你能不能解決求兩個量的問題?(可以用二元一次方程組解決的。4. 列二元一次方程組解決實際問題的主要步驟是什么?說明:通過以上四個問題,學生基本上掌握了列二元一次方程組解決實際問題的方法和步驟,可啟發(fā)學生說出自己的心得體會及疑問.活動意圖:引導學生自己小結(jié)本節(jié)課的知識要點及數(shù)學方法,使知識系統(tǒng)化.說明:還可以建議有條件的學生去讀一讀《孫子算經(jīng)》,可以在網(wǎng)上查,找出自己喜歡的問題,互相出題;同位的同學還可互相編題考察對方;還可以設置"我為老師出難題"活動,每人編一道題,給老師,老師再提出:"誰來幫我解難題",以此激發(fā)學生的學習興趣和信心。

8.一束光線從點A(3,3)出發(fā),經(jīng)過y軸上點C反射后經(jīng)過點B(1,0)則光線從A點到B點經(jīng)過的路線長是( )A.4 B.5 C.6 D.7第四環(huán)節(jié)課堂小結(jié)1、關(guān)于y軸對稱的兩個圖形上點的坐標特征:(x , y)——(- x , y)2、關(guān)于x軸對稱的兩個圖形上點的坐標特征:(x , y)——(x , - y)3、關(guān)于原點對稱的兩個圖形上點的坐標特征:(x , y)——(- x , -y)第五環(huán)節(jié)布置作業(yè)習題3.5 1,2,3四、 教學反思通過“坐標與軸對稱”,經(jīng)歷圖形坐標變化與圖形的軸對稱之間的關(guān)系的探索過程, 掌握空間與圖形的基礎知識和基本技能,豐富對現(xiàn)實空間及圖形的認識,建立初步的空間觀念,發(fā)展形象思維,激發(fā)學生對數(shù)學學習的好奇心與求知欲,學生能積極參與數(shù)學學習活動;積極交流合作,體驗數(shù)學活動充滿著探索與創(chuàng)造。教學中務必給學生創(chuàng)造自主學習與合作交流的機會,留給學生充足的動手機會和思考空間,教師不要急于下結(jié)論。事先一定要準備好坐標紙等,提高課堂效率。

(1)請估計:當n很大時,摸到白球的頻率將會接近(精確到0.1);(2)假如你摸一次,估計你摸到白球的概率P(白球)=;(3)試估算盒子里黑球有多少個.解:(1)0.6(2)0.6(3)設黑球有x個,則2424+x=0.6,解得x=16.經(jīng)檢驗,x=16是方程的解且符合題意.所以盒子里有黑球16個.方法總結(jié):本題主要考查用頻率估計概率的方法,當摸球次數(shù)增多時,摸到白球的頻率mn將會接近一個數(shù)值,則可把這個數(shù)值近似看作概率,知道了概率就能估算盒子里黑球有多少個.三、板書設計用頻率估計概率用頻率估計概率用替代物模擬試驗估計概率通過實驗,理解當實驗次數(shù)較大時實驗頻率穩(wěn)定于理論頻率,并據(jù)此估計某一事件發(fā)生的概率.經(jīng)歷實驗、統(tǒng)計等活動過程,進一步發(fā)展學生合作交流的意識和能力.通過動手實驗和課堂交流,進一步培養(yǎng)學生收集、描述、分析數(shù)據(jù)的技能,提高數(shù)學交流水平,發(fā)展探索、合作的精神.

故最少由9個小立方體搭成,最多由11個小立方體搭成;(3)左視圖如右圖所示.方法點撥:這類問題一般是給出一個由相同的小正方體搭成的立體圖形的兩種視圖,要求想象出這個幾何體可能的形狀.解答時可以先由三種視圖描述出對應的該物體,再由此得出組成該物體的部分個體的個數(shù).三、板書設計視圖概念:用正投影的方法繪制的物體在投影 面上的圖形三視圖的組成主視圖:從正面得到的視圖左視圖:從左面得到的視圖俯視圖:從上面得到的視圖三視圖的畫法:長對正,高平齊,寬相等由三視圖推斷原幾何體的形狀通過觀察、操作、猜想、討論、合作等活動,使學生體會到三視圖中位置及各部分之間大小的對應關(guān)系.通過具體活動,積累學生的觀察、想象物體投影的經(jīng)驗,發(fā)展學生的動手實踐能力、數(shù)學思考能力和空間觀念.

(一)導入新課三角形全等的判定中AA S 和ASA對應于相似三 角形的判定的判定定理1,SAS對應于相似三 角形的判定的判定定理2,那么SSS 對應的三角形相似的判定命題是否正確,這就是本節(jié)研究的內(nèi)容.(板書)(二) 做一做畫△ABC與△A′B′C′,使 、 和 都等 于給定的值k.(1)設法比較∠A與∠A′的大??;(2)△ABC與△A′B′C′相似嗎?說說你的理由.改變k值的大小,再試一試.定理3:三邊:成比例的兩個三 角形相似.(三)例題學習例:如圖,在△ABC和△ADE中,ABAD=BCDE=ACAE ,∠BAD=20°,求∠CAE的度數(shù).解:∵ABAD=BCDE=ACAE ,∴△ABC∽△ADE(三邊成比例的兩個三角形相似). ∴∠BAC=∠DAE,∴∠BAC-∠DAC =∠D AE-∠DAC,即∠BAD=∠CAE.∵∠BAD=20°,∴∠CAE=20°. 三、鞏固練習四、小結(jié)本節(jié)學 習了相似三角形的判定定理3,使用時一定要注意它使用的條件.

解:設需要剪去的小正方形邊長為xcm,則紙盒底面的長方形的長為(19-2x)cm,寬為(15-2x)cm.根據(jù)題意,得(19-2x)(15-2x)=81.整理,得x2-17x+51=0(x<152).方法總結(jié):列方程最重要的是審題,只有理解題意,才能恰當?shù)卦O出未知數(shù),準確地找出已知量和未知量之間的等量關(guān)系,正確地列出方程.在列出方程后,還應根據(jù)實際需求,注明自變量的取值范圍.三、板書設計一元二次方程概念:只含有一個未知數(shù)x的整式方 程,并且都可以化成ax2+bx+c =0(a,b,c為常數(shù),a≠0)的形式一般形式:ax2+bx+c=0(a,b,c為常 數(shù),a≠0),其中ax2,bx,c 分別稱為二次項、一次項和 常數(shù)項,a,b分別稱為二次 項系數(shù)和一次項系數(shù)本課通過豐富的實例,讓學生觀察、歸納出一元二次方程的有關(guān)概念,并從中體會方程的模型思想.通過本節(jié)課的學習,應該讓學生進一步體會一元二次方程也是刻畫現(xiàn)實世界的一個有效數(shù)學模型,初步培養(yǎng)學生的數(shù)學來源于實踐又反過來作用于實踐的辯證唯物主義觀點,激發(fā)學生學習數(shù)學的興趣.

∴OE=OF=OG=OH.又∵EG⊥FH,∴四邊形EFGH為菱形.∵EO+GO=FO+HO,即EG=HF,∴四邊形EFGH為正方形.方法總結(jié):對角線互相垂直平分且相等的四邊形是正方形.探究點二:正方形、菱形、矩形與平行四邊形之間的關(guān)系填空:(1)對角線________________的四邊形是矩形;(2)對角線____________的平行四邊形是矩形;(3)對角線__________的平行四邊形是正方形;(4)對角線________________的矩形是正方形;(5)對角線________________的菱形是正方形.解:(1)相等且互相平分(2)相等(3)垂直且相等(4)垂直(5)相等方法總結(jié):從對角線上分析特殊四邊形之間的關(guān)系應充分考慮特殊四邊形的性質(zhì)與判別,防止混淆.菱形、矩形、正方形都是平行四邊形,且是特殊的平行四邊形,特殊之處在于:矩形是有一個角為直角的平行四邊形;菱形是有一組鄰邊相等的平行四邊形;而正方形是兼具兩者特性的更特殊的平行四邊形,它既是矩形,又是菱形.

一、初步感知間隔的含義1、請同學們伸出右手,張開,數(shù)一數(shù),5個手指之間有幾個空格?在數(shù)學上,我們把 空格叫做間隔,也就是說,5個手指之間有幾個間隔?4個間隔是在幾個手指之間?2. 其實,這樣的數(shù)學問題,在我們的生活中,隨處可見。誰能舉幾個這樣的例子3、看圖:在畫面上我們看到春天桃紅柳綠,到處是一派生機勃勃的景象,你們知道嗎?3月12日是什么日子,這一天全國上下到處都在植樹,為保護環(huán)境獻出自己的一份力量。 出示圖:這里從頭到尾栽了幾棵樹,數(shù)一數(shù),它們之間又有幾個間隔呢?你發(fā)現(xiàn)了什么?誰來說一說?同時板書。4、那你能像這樣用一個圖表示出來嗎?請你們選擇一種動手畫一畫吧!5、匯報:畫了8棵樹,他們之間有7個間隔數(shù),9棵樹之間有8個間隔?!?、你發(fā)現(xiàn)植樹棵樹和間隔數(shù)之間有什么規(guī)律呢?(自己先想想,再把你的想法和伙伴們互相交流一下)。反饋:誰來說說你的發(fā)現(xiàn)?評價:哦,這是你的發(fā)現(xiàn)……你還能用一個算式來概括。邊板書邊說:同學們都發(fā)現(xiàn)了從頭到尾栽一排樹時,植樹棵樹比間隔數(shù)多1,(指表格),也可以寫成兩端要栽時,植樹棵數(shù)-間隔數(shù)+1,間隔數(shù)=植樹棵樹-1。

二、教學目標1、知識與技能:使學生經(jīng)歷探索加法交換律的過程,理解并掌握加法交換律,初步感知加法交換律的價值,發(fā)展應用意識。2、數(shù)學思考:使學生在學習用符號、字母表示加法交換律的過程中,初步發(fā)展學生的符號感,逐步提高歸納、推理的抽象思維能力。3、解決問題:運用加法交換律的思想探索其他運算中的交換律。4、情感與態(tài)度:使學生在數(shù)學活動中獲得成功的體驗,進一步增強對數(shù)學學習的興趣和信心,初步形成獨立思考和探究問題的意識和習慣。三、教學重點:理解并運用加法交換律。四、教學難點:在學生已有知識經(jīng)驗的基礎上引導學生歸納出加法交換律。五、教學關(guān)鍵:引導學生運用各種不同的表達方法理解加法交換律的思想。六、教學過程(一)情境,形成問題1、談話:同學們喜歡運動嗎?你最喜歡哪項體育運動?李叔叔是一個自行車旅行愛好者,咱們一起去了解一下李叔叔的情況。1、出示李叔叔騎車旅行的情境圖。仔細觀察這幅圖,你從圖上知道哪些信息?

教學目標:1.讓學生自主探索小數(shù)加、減法的計算方法,理解計算的算理并能正確地進行加、減運算及混合運算。2.使學生理解整數(shù)運算定律對于小數(shù)同樣適用,并會運用這些定律進行一些小數(shù)的簡便計算,進一步發(fā)展學生的數(shù)感。3.使學生體會小數(shù)加、減運算在生活、學習中的廣泛應用,提高小數(shù)加、減計算能力的自覺性。教學重難點:(一)理解小數(shù)加、減法的算理,掌握其計算法則是教學重點.(二)位數(shù)不同的小數(shù)加、減法計算,是學習的難點.第一課時教學目標:1、讓學生生自主探索小數(shù)的加、減法的計算方法,理解計算的算理并能正確地進行加、減及混合運算。2、使學生體會小數(shù)加減運算在生活、學習中的廣泛應用,體會數(shù)學的工具性作用。3、激發(fā)學生學習小數(shù)加減法的興趣,涌動長大后也要為國爭光的豪情,提高學習的主動性和自覺性。

三、鞏固應用在這一環(huán)節(jié),我設計了三個層次的習題,內(nèi)容由淺入深,逐步提高,讓學生體驗到用數(shù)學知識解決實際問題的成功感,并給學生提供自主探索的時間和空間,從而產(chǎn)生積極的數(shù)學情感。第一個層次(基礎練習):課件出示教材第28頁中“試一試”的第一題,讓學生根據(jù)情境中的信息,比較兩題之間的異同,獨立解答,然后交流解答方法,加深對百分數(shù)問題的理解。第二個層次(綜合練習):課件出示教材第29頁中“練一練”的第1、2、4題,鼓勵學生獨立分析題意,尋找等量關(guān)系,然后列方程解答。引導學生將題中的“二成”轉(zhuǎn)化為百分數(shù)。第三個層次(提高練習):課件出示教材第29頁中“練一練”的第5題,鼓勵學生提出兩個不同的問題并解答,培養(yǎng)學生根據(jù)統(tǒng)計圖提供的信息提出問題的能力,使學有余力的學生有所提高。四、總結(jié)評價1、學生歸納總結(jié)在本節(jié)課你學到了什么,有哪些地方要提醒同學們注意。2、師作適當?shù)难a充和評價。此環(huán)節(jié)通過師生互動,生生互動,經(jīng)歷一次再學習,再鞏固的過程。

一、說教材1、教材內(nèi)容:本節(jié)是新北師大版教材六年級數(shù)學上冊第二單元第二課的內(nèi)容。2、教材分析:本課是一節(jié)計算與解決問題相結(jié)合的課,是在學生學會分數(shù)混合運算的運算順序基礎上學習的,是對整數(shù)乘法運算定律的推廣,也是在學生學會簡單的“求一個數(shù)的幾分之幾是多少?”的分數(shù)乘法問題以及簡單兩步計算問題基礎上,進一步學習的較復雜“求比一個數(shù)多(或少)幾分之幾的數(shù)是多少?”的分數(shù)乘法問題,是后續(xù)學習整、小、分數(shù)混合運算及其簡便運算,學習復雜分數(shù)應用問題的基礎。3、學情分析:本課是在學習完分數(shù)混合運算(一)之后學習,學生已經(jīng)有一定的基礎。4、學習目標:(1)、通過解決“成交量”的問題,呈現(xiàn)不同解題策略,理解“求比一個數(shù)多幾分之一的數(shù)是多少?”這類問題的數(shù)量關(guān)系,并學會解決方法。(2)、通過畫圖正確理解題意,分析數(shù)量關(guān)系,尤其是幫助理解“1+1/5”的含義。進一步體會畫圖是一種分析問題、解決問題的重要策略。

(四)引導觀察,發(fā)現(xiàn)規(guī)律1.解決的問題(1)觀察發(fā)現(xiàn)分數(shù)的基本性質(zhì)(2)培養(yǎng)學生觀察--探索--抽象--概括的能力。2.教學安排(1)提出問題:通過驗證這兩組分數(shù)確實相等,那么,它們的分子、分母有什么變化規(guī)律呢?(2)全班交流:不論學生的觀察結(jié)果是什么,教師要順應學生的思維,針對學生的觀察方法,進行引導性評價①觀察角度的獨特性②觀察事物的有序性③觀察事物的全面性等。(注意觀察的順序從左到右、從右到左)引導層次一:你發(fā)現(xiàn)了1/2和2/4兩個數(shù)之間的這樣的規(guī)律,在這個等式中任意兩個數(shù)都有這樣的規(guī)律嗎?引導學生對1/2和4/8、2/4和4/8每組中兩個數(shù)之間規(guī)律的觀察。引導層次二:在1/2=2/4=4/8中數(shù)之間有這樣的規(guī)律,在9/12=6/8=3/4中呢?引導層次三:用自己的話把你觀察到的規(guī)律概括出來。

3、概括百分數(shù)的意義師:通過剛才同學們的互相合作交流你感受到,百分數(shù)表示什么意思嗎?請你先自己想一想,然后同桌合作交流一下。(在充分的表述對百分數(shù)的意義認識基礎上,由生活信息概括提煉出的百分數(shù)的含義)4、教學百分數(shù)的讀寫法百分數(shù)的讀對于學生來說比較簡單,重點介紹%的寫法。教師出示帶有情境的一組百分數(shù)數(shù)據(jù)信息,先讓學生自讀,再提問:讀了這些數(shù)據(jù)發(fā)現(xiàn)了什么?使學生了解到百分號前面的數(shù)可以是整數(shù)、小數(shù),可以比100大可以比100小,完善對百分數(shù)的認識,同時也滲透德育教育,讓學生通過數(shù)據(jù)說說自己的體會,得到熱愛祖國、熱愛家鄉(xiāng)、愛護環(huán)境的教育。5、百分數(shù)與分數(shù)的聯(lián)系區(qū)別這是教學中的難點,純語言的表達過于抽象,也不利于理解。因此它們之間的區(qū)別與聯(lián)系是通過練習的形式解決。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。