
(通過這道題的練習(xí),可以看出中國的漢字是非常美的。誰能舉例說出哪些漢字可以寫成軸對稱圖形嗎?)(師生共同品味中國文字的對稱美,從而宏揚中國文化,做到知識性、技能性、思想性和藝術(shù)性溶為一體。)4、配樂剪軸對稱圖形比賽。請同學(xué)們拿出一張彩色紙用對折的方法剪出一個軸對稱圖形,然后貼在白紙上。并把剪得的作品貼在黑板上讓大家欣賞。引導(dǎo)學(xué)生觀察:哪些圖形較美?為什么?五、歸納小結(jié)。設(shè)問 :今天學(xué)了什么?什么叫軸對稱圖形? 怎樣判斷軸對稱圖形? 什么叫對稱軸?怎樣找出軸對稱圖形的對稱軸?(新課后的總結(jié)能起到畫龍點睛的作用,同時有利于幫助學(xué)生理清知識結(jié)構(gòu),形成完整認(rèn)識。)全課小結(jié):這節(jié)課,我通過五個環(huán)節(jié)的教學(xué)設(shè)計,既遵循了概念教學(xué)的規(guī)律,又符合小學(xué)生的認(rèn)知特點,指導(dǎo)學(xué)生操作、觀察、引導(dǎo)概括,獲取新知;同時注重培養(yǎng)學(xué)生的形象思維和抽象思維。

2、81頁的做一做。做完后,引導(dǎo)學(xué)生觀察4和8;16和32這一組的最大公因數(shù)的特點:當(dāng)較大數(shù)是較小數(shù)的倍數(shù)時,他們的最大公因數(shù)是較小數(shù)。1和7;8和9這一組數(shù)的最大公因數(shù)只有1。這樣的練習(xí)設(shè)計,目的是讓學(xué)生發(fā)現(xiàn)求最大公因數(shù)中的特殊情況。四、遷移運用,拓展探究寫出下列各分?jǐn)?shù)分子和分母的最大公因數(shù)。7/21 8/28 16/40 6/15 目的是為下一節(jié)課《約分》做好了知識的鋪墊。全課總結(jié):通過今天的學(xué)習(xí),你有什么收獲?同桌互說,指名匯報。這樣的總結(jié),從知識的層面上做了一次回顧。并及時的總結(jié)了解學(xué)情,真正做到“堂堂清”五、說板書設(shè)計我本節(jié)課的板書設(shè)計力圖全面而簡明的將本課的內(nèi)容傳遞給學(xué)生,便于學(xué)生理解和記憶。各位評委老師,我僅從教材、教法、學(xué)法、及教學(xué)過程、板書設(shè)計等幾個方面對本課進行說明。這只是我預(yù)設(shè)的一種方案,但是課堂千變?nèi)f化的生成效果,最終還要和學(xué)生、課堂相結(jié)合。說課的不足之處還請多多指教,我的說課到此結(jié)束,謝謝各位評委老師。

3、歸納求最小公倍數(shù)的方法。師:想一想找“共同的休息日”和“總?cè)藬?shù)”的過程,說一說可以怎樣求兩個數(shù)的最小公倍數(shù)?(①找倍數(shù):從小到大依次找出各個數(shù)的倍數(shù);②找公有:把各個數(shù)的倍數(shù)進行對照找出公有的倍數(shù);③找最?。簭墓械谋稊?shù)中找出最小的一個。)4、看書88——89頁,你還有什么問題?師:觀察一下,為什么6和8這兩個數(shù)不相同,卻可以寫出相同的公倍數(shù)呢?公倍數(shù)與原有的這兩個數(shù)有什么關(guān)系?公倍數(shù)與它們的最小公倍數(shù)又有什么關(guān)系?教師畫出數(shù)軸表示6和8的倍數(shù),并可生動地比喻6寶寶步子小,要走3次才能到達(dá)24的位置。而8寶寶步子大,只要走兩次就到達(dá)24的位置。到達(dá)24的位置后,6寶寶和8寶寶就碰面了??梢姽稊?shù)24是6和8的不同倍數(shù)。三、解決問題,深化理解(練習(xí)是理解知識,掌握知識,形成技能的基本途徑,又是運用知識,發(fā)展智能,完善認(rèn)知結(jié)構(gòu)的重要手段。

一、教材分析《3的倍數(shù)的特征》是人教版實驗教材小學(xué)數(shù)學(xué)五年級下冊第19頁的內(nèi)容,它是在因數(shù)和倍數(shù)的基礎(chǔ)上進行教學(xué)的,是求最大公因數(shù)、最小公倍數(shù)的重要基礎(chǔ),也是學(xué)習(xí)約分和通分的必要前提。因此,使學(xué)生熟練地掌握2、5、3的倍數(shù)的特征,具有十分重要的意義。教材的安排是先教學(xué)2、5的倍數(shù)的特征,再教學(xué)3的倍數(shù)的特征。因為2、5的倍數(shù)的特征僅僅體現(xiàn)在個位上的數(shù),比較明顯,容易理解。而3的倍數(shù)的特征,不能只從個位上的數(shù)來判定,必須把其各位上的數(shù)相加,看所得的和是否是3的倍數(shù)來判定,學(xué)生理解起來有一定的困難,因此,本課的教學(xué)目標(biāo),我從知識、能力、情感三方面綜合考慮,確定教學(xué)目標(biāo)如下:1、使學(xué)生通過理解和掌握3的倍數(shù)的特征,并且能熟練地去判斷一個數(shù)是否是3的倍數(shù),以培養(yǎng)學(xué)生觀察、分析、動手操作及概括問題的能力,進一步發(fā)展學(xué)生的數(shù)感。

2、互動交流,探究規(guī)律。 (1)、小組內(nèi)交流討論: 讓每個同學(xué)說出自己的發(fā)現(xiàn),說說自己的猜想,并討論郵政編碼中的數(shù)字是怎樣編排的。(師巡視,隨機參與討論。) (2)、全班展示交流: 師:那個小組愿意先來展示一下你們的探究結(jié)果? 生1:我們發(fā)現(xiàn)郵政編碼都是由6個數(shù)字組成的?!?生2:我們發(fā)現(xiàn)前兩位數(shù)字表示省,如…… 生3:同一個省、市的郵政編碼前三位數(shù)字相同。比如……。 (讓學(xué)生充分發(fā)言) 【設(shè)計意圖:“自主探索——互動交流——匯報展示”,充分展現(xiàn)學(xué)生自主探究的過程,突出了學(xué)生的主體地位,培養(yǎng)了學(xué)生自主獲取知識的能力和合作交流的意識。】 3、共同優(yōu)化,形成結(jié)論。 (1) 教師配合多媒體課件說明郵政編碼的結(jié)構(gòu)和組成: 師:我國郵政編碼的結(jié)構(gòu)與含義采用“四級六位制”。編碼含義:郵政編碼的六位數(shù)字分別代表了省、市、郵政、縣市、投遞局四級單位。其中:前二位表示省(自治區(qū)、直轄市);前三位表示郵區(qū);前四位表示縣(市);最后兩位表示投遞局(所)

一、教材分析 1、教材內(nèi)容及所處地位綜合實踐活動是在新一輪基礎(chǔ)教育課程改革中應(yīng)運而生的新型課程。所謂綜合實踐活動,主要指以學(xué)生的興趣和直接經(jīng)驗為基礎(chǔ),以與學(xué)生學(xué)習(xí)生活和社會生活密切相關(guān)的各類現(xiàn)實性、綜合性、實踐性問題為內(nèi)容,以研究性學(xué)習(xí)為主導(dǎo)學(xué)習(xí)方式,以培養(yǎng)學(xué)生的創(chuàng)新精神、實踐能力及體現(xiàn)對知識的綜合運用為主要目的一類新型課程。具有以下特點: 1、基于興趣與直接經(jīng)驗。2、回歸生活世界。3、立足實踐。4、著眼創(chuàng)新。5、以研究性學(xué)習(xí)為主導(dǎo)學(xué)習(xí)方式:(1)以轉(zhuǎn)變學(xué)生的學(xué)習(xí)方式為出發(fā)點。(2)強調(diào)知識的聯(lián)系和綜合運用。(3)注重過程。(4)強調(diào)開放。(5)重視師生互動。四年級下冊綜合實踐活動課程要培養(yǎng)學(xué)生對生活、學(xué)習(xí)的積極態(tài)度,使他們具備一定的交往合作能力、觀察分析能力、動手操作能力;要讓他們初步掌握參與社會實踐的方法,信息資料的搜集、分析和處理問題的方法以及研究探索的方法;使學(xué)生形成合作、分享、積極進取等良好的個性品質(zhì),成為創(chuàng)新生活的小主人。2、單元內(nèi)容分析本教材包括?方法與指導(dǎo)?和?活動與探究?兩部分內(nèi)容, ?方法與探究? 主要是讓學(xué)生掌握如何進行采訪,通過一系列活動,掌握采訪的準(zhǔn)備、注意事項、具體實施,及最后的交流總結(jié),培養(yǎng)學(xué)生交往能力。 ?活動與探究?包括六個主題,主題一我們身邊的標(biāo)志,通過讓學(xué)生認(rèn)識標(biāo)志,體會含義。學(xué)會分類,最后學(xué)會制作標(biāo)志,循序漸進,蘊含了創(chuàng)新、守規(guī)、審美等能力的培養(yǎng);主題二早餐與健康通過談?wù)?,調(diào)查、分析討論培養(yǎng)學(xué)生交流總結(jié)能力,樹立健康生活意識;主題三,有趣的絲網(wǎng)花,通過制作培養(yǎng)學(xué)生合作、審美、動手能力;主題四巧手做風(fēng)箏繼續(xù)對學(xué)生進行培養(yǎng);主題五植物的扦插與嫁接,與現(xiàn)實生活聯(lián)系密切,通過活動掌握方法,體驗快樂,體驗勞動的樂趣;主題六爭做小小志愿者,通過了解體驗志愿者的活動,豐富閱歷,培養(yǎng)學(xué)生的服務(wù)意識,自身獲得提升與發(fā)展。教材的重點、難點:重點:學(xué)會交流,提升能力;認(rèn)識各種標(biāo)志,學(xué)會制作;學(xué)會健康的生活;通過制作絲網(wǎng)花、風(fēng)箏、植物的扦插于嫁接,學(xué)會制作,提高動手能力,通過體驗小小志愿者,提高服務(wù)意識。難點:教學(xué)中讓學(xué)生親身參與、主動實踐,在實踐中綜合運用所學(xué)知識解決各種實際問題,提高解決實際問題的能力。學(xué)習(xí)基礎(chǔ):四年級學(xué)生已具備了一定的實踐能力,因此要逐步培養(yǎng)學(xué)生一些探究問題的方法,提高學(xué)生的動手意識,能夠從生活和學(xué)習(xí)中挖掘自己感興趣的活動主題,能夠試著和同學(xué)展開小組合作學(xué)習(xí),在有效的活動中不斷提高學(xué)生的動手與創(chuàng)新的潛能。

已知一水壩的橫斷面是梯形ABCD,下底BC長14m,斜坡AB的坡度為3∶3,另一腰CD與下底的夾角為45°,且長為46m,求它的上底的長(精確到0.1m,參考數(shù)據(jù):2≈1.414,3≈1.732).解析:過點A作AE⊥BC于E,過點D作DF⊥BC于F,根據(jù)已知條件求出AE=DF的值,再根據(jù)坡度求出BE,最后根據(jù)EF=BC-BE-FC求出AD.解:過點A作AE⊥BC,過點D作DF⊥BC,垂足分別為E、F.∵CD與BC的夾角為45°,∴∠DCF=45°,∴∠CDF=45°.∵CD=46m,∴DF=CF=462=43(m),∴AE=DF=43m.∵斜坡AB的坡度為3∶3,∴tan∠ABE=AEBE=33=3,∴BE=4m.∵BC=14m,∴EF=BC-BE-CF=14-4-43=10-43(m).∵AD=EF,∴AD=10-43≈3.1(m).所以,它的上底的長約為3.1m.方法總結(jié):考查對坡度的理解及梯形的性質(zhì)的掌握情況.解決問題的關(guān)鍵是添加輔助線構(gòu)造直角三角形.

一、本章知識要點: 1、銳角三角函數(shù)的概念; 2、解直角三角形。二、本章教材分析: (一).使學(xué)生正確理解和掌握三角函數(shù)的定義,才能正確理解和掌握直角三角形中邊與角的相互關(guān)系,進而才能利用直角三角形的邊與角的相互關(guān)系去解直角三角形,因此三角形函數(shù)定義既是本章的重點又是理解本章知識的關(guān)鍵,而且也是本章知識的難點。如何解決這一關(guān)鍵問題,教材采取了以下的教學(xué)步驟:1. 從實際中提出問題,如修建揚水站的實例,這一實例可歸結(jié)為已知RtΔ的一個銳角和斜邊求已知角的對邊的問題。顯然用勾股定理和直角三角形兩個銳角互余中的邊與邊或角與角的關(guān)系無法解出了,因此需要進一步來研究直角三角形中邊與角的相互關(guān)系。2. 教材又采取了從特殊到一般的研究方法利用學(xué)生的舊知識,以含30°、45°的直角三角形為例:揭示了直角三角形中一個銳角確定為30°時,那么這角的對邊與斜邊之比就確定比值為1:2。

(2)由題意可得-10x2+180x+400=1120,整理得x2-18x+72=0,解得x1=6,x2=12(舍去).所以,該產(chǎn)品的質(zhì)量檔次為第6檔.方法總結(jié):解決此類問題的關(guān)鍵是要吃透題意,確定變量,建立函數(shù)模型.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課后鞏固提升”第8題三、板書設(shè)計二次函數(shù)1.二次函數(shù)的概念2.從實際問題中抽象出二次函數(shù)解析式二次函數(shù)是一種常見的函數(shù),應(yīng)用非常廣泛,它是客觀地反映現(xiàn)實世界中變量之間的數(shù)量關(guān)系和變化規(guī)律的一種非常重要的數(shù)學(xué)模型.許多實際問題往往可以歸結(jié)為二次函數(shù)加以研究.本節(jié)課是學(xué)習(xí)二次函數(shù)的第一節(jié)課,通過實例引入二次函數(shù)的概念,并學(xué)習(xí)求一些簡單的實際問題中二次函數(shù)的解析式.在教學(xué)中要重視二次函數(shù)概念的形成和建構(gòu),在概念的學(xué)習(xí)過程中,讓學(xué)生體驗從問題出發(fā)到列二次函數(shù)解析式的過程,體驗用函數(shù)思想去描述、研究變量之間變化規(guī)律的意義.

4.x的值是否可以任意取?如果不能任意取,請求出它的范圍,[x的值不能任意取,其范圍是0≤x≤2]5.若設(shè)該商品每天的利潤為y元,求y與x的函數(shù)關(guān)系式。[y=(10-8-x) (100+100x)(0≤x≤2)]將函數(shù)關(guān)系式y(tǒng)=x(20-2x)(0 <x <10=化為:y=-2x2+20x (0<x<10)…(1)將函數(shù)關(guān)系式y(tǒng)=(10-8-x)(100+100x)(0≤x≤2)化為:y=-100x2+100x+20D (0≤x≤2)…(2)三、觀察;概括1.教師引導(dǎo)學(xué)生觀察函數(shù)關(guān)系式(1)和(2),提出問題讓學(xué)生思考回答;(1)函數(shù)關(guān)系式(1)和(2)的自變量各有幾個? (各有1個)(2)多項式-2x2+20和-100x2+100x+200分別是幾次多項式?(分別是二次多項式)(3)函數(shù)關(guān)系式(1)和(2)有什么共同特點? (都是用自變量的二次多項式來表示的)(4)本章導(dǎo)圖中的問題以及P1頁的問題2有什么共同特點?讓學(xué)生討論、歸結(jié)為:自變量x為何值時,函數(shù)y取得最大值。2.二次函數(shù)定義:形如y=ax2+bx+c (a、b、、c是常數(shù),a≠0)的函數(shù)叫做x的二次函數(shù), a叫做二次函數(shù)的系數(shù),b叫做一次項的系數(shù),c叫作常數(shù)項.

(3)若要滿足結(jié)論,則∠BFO=∠GFC,根據(jù)切線長定理得∠BFO=∠EFO,從而得到這三個角應(yīng)是60°,然后結(jié)合已知的正方形的邊長,也是圓的直徑,利用30°的直角三角形的知識進行計算.解:(1)FB=FE,PE=PA;(2)四邊形CDPF的周長為FC+CD+DP+PE+EF=FC+CD+DP+PA+BF=BF+FC+CD+DP+PA=BC+CD+DA=23×3=63;(3)假設(shè)存在點P,使BF·FG=CF·OF.∴BFOF=CFFG.∵cos∠OFB=BFOF,cos∠GFC=CFFG,∴∠OFB=∠GFC.∵∠OFB=∠OFE,∴∠OFE=∠OFB=∠GFC=60°,∴在Rt△OFB中,BF=OBtan∠OFB=OBtan60°=1.在Rt△GFC中,∵CG=CF·tan∠GFC=CF·tan60°=(23-1)×3=6-3,∴DG=CG-CD=6-33,∴DP=DG·tan∠PGD=DG·tan30°=23-3,∴AP=AD-DP=23-(23-3)=3.方法總結(jié):由于存在性問題的結(jié)論有兩種可能,所以具有開放的特征,在假設(shè)存在性以后進行的推理或計算.一般思路是:假設(shè)存在——推理論證——得出結(jié)論.若能導(dǎo)出合理的結(jié)果,就做出“存在”的判斷,若導(dǎo)出矛盾,就做出“不存在”的判斷.

解析:首先求得圓的半徑長,然后求得P、Q、R到Q′的距離,即可作出判斷.解:⊙O′的半徑是r= 12+12=2,PO′=2>2,則點P在⊙O′的外部;QO′=1<2,則點Q在⊙O′的內(nèi)部;RO′=(2-1)2+(2-1)2=2=圓的半徑,故點R在圓上.方法總結(jié):注意運用平面內(nèi)兩點之間的距離公式,設(shè)平面內(nèi)任意兩點的坐標(biāo)分別為A(x1,y1),B(x2,y2),則AB=(x1-x2)2+(y1-y2)2.【類型四】 點與圓的位置關(guān)系的實際應(yīng)用如圖,城市A的正北方向50千米的B處,有一無線電信號發(fā)射塔.已知,該發(fā)射塔發(fā)射的無線電信號的有效半徑為100千米,AC是一條直達(dá)C城的公路,從A城發(fā)往C城的客車車速為60千米/時.(1)當(dāng)客車從A城出發(fā)開往C城時,某人立即打開無線電收音機,客車行駛了0.5小時的時候,接收信號最強.此時,客車到發(fā)射塔的距離是多少千米(離發(fā)射塔越近,信號越強)?(2)客車從A城到C城共行駛2小時,請你判斷到C城后還能接收到信號嗎?請說明理由.

我們知道圓是一個旋轉(zhuǎn)對稱圖形,無論繞圓心旋轉(zhuǎn)多少度,它都能與自身重合,對稱中心即為其圓心.將圖中的扇形AOB(陰影部分)繞點O逆時針旋轉(zhuǎn)某個角度,畫出旋轉(zhuǎn)之后的圖形,比較前后兩個圖形,你能發(fā)現(xiàn)什么?二、合作探究探究點:圓心角、弧、弦之間的關(guān)系【類型一】 利用圓心角、弧、弦之間的關(guān)系證明線段相等如圖,M為⊙O上一點,MA︵=MB︵,MD⊥OA于D,ME⊥OB于E,求證:MD=ME.解析:連接MO,根據(jù)等弧對等圓心角,則∠MOD=∠MOE,再由角平分線的性質(zhì),得出MD=ME.證明:連接MO,∵ MA︵=MB︵,∴∠MOD=∠MOE,又∵MD⊥OA于D,ME⊥OB于E,∴MD=ME.方法總結(jié):圓心角、弧、弦之間相等關(guān)系的定理可以用來證明線段相等.本題考查了等弧對等圓心角,以及角平分線的性質(zhì).

教學(xué)目標(biāo):1、理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。2、了解計算一個銳角的正切值的方法。教學(xué)重點:理解并掌握正切的含義,會在直角三角形中求出某個銳角的正切值。教學(xué)難點:計算一個銳角的正切值的方法。教學(xué)過程:一、觀察回答:如圖某體育館,為了方便不同需求的觀眾設(shè)計了多種形式的臺階。下列圖中的兩個臺階哪個更陡?你是怎么判斷的?圖(1) 圖(2)[點撥]可將這兩個臺階抽象地看成兩個三角形答:圖 的臺階更陡,理由 二、探索活動1、思考與探索一:除了用臺階的傾斜角度大小外,還可以如何描述臺階的傾斜程度呢?① 可通過測量BC與AC的長度,② 再算出它們的比,來說明臺階的傾斜程度。(思考:BC與AC長度的比與臺階的傾斜程度有何關(guān)系?)答:_________________.③ 討論:你還可以用其它什么方法?能說出你的理由嗎?答:________________________.2、思考與探索二:

解析:根據(jù)銳角三角函數(shù)的概念,知sin70°<1,cos70°<1,tan70°>1.又cos70°=sin20°,銳角的正弦值隨著角的增大而增大,∴sin70°>sin20°=cos70°.故選D.方法總結(jié):當(dāng)角度在0°cosA>0.當(dāng)角度在45°<∠A<90°間變化時,tanA>1.變式訓(xùn)練:見《學(xué)練優(yōu)》本課時練習(xí)“課堂達(dá)標(biāo)訓(xùn)練”第10題【類型四】 與三角函數(shù)有關(guān)的探究性問題在Rt△ABC中,∠C=90°,D為BC邊(除端點外)上的一點,設(shè)∠ADC=α,∠B=β.(1)猜想sinα與sinβ的大小關(guān)系;(2)試證明你的結(jié)論.解析:(1)因為在△ABD中,∠ADC為△ABD的外角,可知∠ADC>∠B,可猜想sinα>sinβ;(2)利用三角函數(shù)的定義可求出sinα,sinβ的關(guān)系式即可得出結(jié)論.解:(1)猜想:sinα>sinβ;(2)∵∠C=90°,∴sinα=ACAD ,sinβ=ACAB .∵AD<AB,∴ACAD>ACAB,即sinα>sinβ.方法總結(jié):利用三角函數(shù)的定義把兩角的正弦值表示成線段的比,然后進行比較是解題的關(guān)鍵.

[教學(xué)目標(biāo)]1、 理解并掌握正弦、余弦的含義,會在直角三角形中求出某個銳角的正弦和余弦值。2、能用函數(shù)的觀點理解正弦、余弦和正切。[教學(xué)重點與難點] 在直角三角形中求出某個銳角的正弦和余弦值。[教學(xué)過程] 一、情景創(chuàng)設(shè)1、問題1:如圖,小明沿著某斜坡向上行走了13m后,他的相對位置升高了5m,如果他沿著該斜坡行走了20m,那么他的相對位置升高了多少?行走了a m呢?2、問題2:在上述問題中,他在水平方向又分別前進了多遠(yuǎn)?二、探索活動1、思考:從上面的兩個問題可以看出:當(dāng)直角三角形的一個銳角的大小已確定時,它的對邊與斜邊的比值________;它的鄰邊與斜邊的比值________。(根據(jù)是__________________。)2、正弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的對邊a與斜邊c的比叫做∠A的______,記作________,即:sinA=________=________.3、余弦的定義 如圖,在Rt△ABC中,∠C=90°,我們把銳角∠A的鄰邊b與斜邊c的比叫做∠A的______,記作=_________,即:cosA=______=_____。(你能寫出∠B的正弦、余弦的表達(dá)式嗎?)試試看.___________.

二、說教學(xué)目標(biāo) 1.會認(rèn)“婆、脊”等7個生字,會寫“漏、喂”等13個生字,讀準(zhǔn)多音字“哩、旋”,能正確讀寫“里屋、莫非”等詞語。2.有感情地朗讀課文,理解課文內(nèi)容,體會故事的趣味性。3.了解故事的特點,體會民間故事的魅力,并用自己的話復(fù)述課文。三、說教學(xué)重難點1.理解課文內(nèi)容,找出故事中具有吸引力的情節(jié)。(重點)2.了解故事的特點,能用自己的語言把故事復(fù)述出來。(難點)四、說教法學(xué)法1.自主學(xué)習(xí)法 要求學(xué)生課前要做好預(yù)習(xí),了解課文內(nèi)容,對不認(rèn)識的生字學(xué)會自己查字典,對不熟悉的詞語自己標(biāo)記出來,在課堂上提出來集體討論。對課后習(xí)題在預(yù)習(xí)中要有自己的思考。 2.朗讀法 這篇課文語言幽默詼諧。要讓學(xué)生通過充分的朗讀了解故事的主要內(nèi)容,體會故事的主旨,并在弄通故事大意的基礎(chǔ)上能用自己的話復(fù)述故事。

我說課的內(nèi)容是《彩虹》。《彩虹》這一篇富有情趣的散課文,圖文并茂,插圖優(yōu)美,生動易懂?!安屎纭笔菍W(xué)生熟悉卻不太了解,見過卻又并不常見的一種自然現(xiàn)象。這首詩歌很容易引發(fā)學(xué)生學(xué)習(xí)的好奇心,激起學(xué)生的求知欲。[說目標(biāo)]在本節(jié)課的教學(xué)中,我設(shè)計了1、認(rèn)識“虹、座、澆”等13個生字;會寫“那、著”等7個生字,認(rèn)識 偏旁“衤”。 2、 能正確、流利、有感情地朗讀課文。達(dá)到識字、讀文能力的教學(xué)目標(biāo)。

一、創(chuàng)設(shè)情境,設(shè)置懸念,激趣導(dǎo)入。好的開端是一堂課成功的一半。正因為如此,我運用激趣導(dǎo)入,進行猜謎語、聽聲音比賽。利用課件引導(dǎo)學(xué)生的聽覺、視覺、思維想象多渠道運作起來,積極參與到學(xué)習(xí)中。而且我還特別設(shè)計了個別聲音用耳朵比較難以辨別,學(xué)生只好用眼睛揭開謎底,從而初步接觸課文“眼見為實”的主旨。最后出示“咕咚”的聲音,讓學(xué)生猜猜這樣的聲音通常在什么情況下會出現(xiàn),激發(fā)他們的想象力。讓學(xué)生模擬發(fā)“咕咚”聲,從而引出課題。并且告訴大家:千萬別小看這個有點奇怪的聲音,它可在森林中掀起了一場不大不小的風(fēng)波呢。

一、說教材:《夜色》是一首兒歌,采用第一人稱,寫“我”從前膽子很小很小,很怕黑。后來“我”和爸爸出去散步,發(fā)現(xiàn)夜晚也像白天一樣美好,從此不再怕黑了。兒歌分兩個自然小節(jié)。整篇語言生動活潑,通俗易懂,充滿童趣。怕黑的天性卻使孩子們看不到夜的美麗,阻擋了孩子們探索的視野。夜晚的星空是怎樣璀璨?夜晚的花草是怎樣的微笑?夜晚的大地又是怎樣唱著無聲的歌?柯巖的《夜色》正是捕捉到孩子們怕黑的心理,以打動兒童心扉的文字,呼喚著孩子們親近自然,熱愛生活。課文分兩小節(jié)。第一小節(jié)寫到:我從前膽子很小很小,天一黑就不敢往外瞧。媽媽講了許多勇敢的故事,可我一看窗外,心兒還是亂跳。這一節(jié)以第一人稱的敘述語言開頭,講述了“我”是多么怕黑,孩子們很容易產(chǎn)生共鳴。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。