
問題:2015年9月24日,美國國家航空航天局(下簡稱:NASA)對外宣稱將有重大發(fā)現(xiàn)宣布,可能發(fā)現(xiàn)除地球外適合人類居住的星球,一時間引起了人們的廣泛關注.早在2014年,NASA就發(fā)現(xiàn)一顆行星,這顆行星是第一顆在太陽系外恒星旁發(fā)現(xiàn)的適居帶內、半徑與地球相若的系外行星,這顆行星環(huán)繞紅矮星開普勒186,距離地球492光年.1光年是光經過一年所行的距離,光的速度大約是3×105km/s.問:這顆行星距離地球多遠(1年=3.1536×107s)?3×105×3.1536×107×492=3×3.1536×4.92×105×107×102=4.6547136×10×105×107×102.問題:“10×105×107×102”等于多少呢?二、合作探究探究點:同底數(shù)冪的乘法【類型一】 底數(shù)為單項式的同底數(shù)冪的乘法計算:(1)23×24×2;(2)-a3·(-a)2·(-a)3;(3)mn+1·mn·m2·m.解析:(1)根據(jù)同底數(shù)冪的乘法法則進行計算即可;(2)先算乘方,再根據(jù)同底數(shù)冪的乘法法則進行計算即可;(3)根據(jù)同底數(shù)冪的乘法法則進行計算即可.

用你的語言描述一下配方法解一元二次方程的基本步驟和需注意的問題。 教師引導學生進行反思、歸納配方法解一元二次方程的基本思路、步驟及注意事項。鞏固對課堂知識的理解和掌握,同時進一步體會解一元二次方程時降次的基本策略和轉化的思想。 六、布置作業(yè)分層布置作業(yè),既鞏固本節(jié)主要內容,又有讓學有余力的學生有思考和提升的空間。思考題為后面深入研究配方法,完善對配方法的認識做準備。 同時讓學生感受到數(shù)學學習在實際生活中的作用,感受數(shù)學的美。五、板書設計我將板書分成了兩部分,重點突出這節(jié)課用配方法解一元二次方程的步驟,在配以適當?shù)木毩?,簡單明了,重點突出。六、教學評價與反思本節(jié)課我根據(jù)學生的特點采用合作交流探究式學西方法教學,讓學生動起來,感受數(shù)學學習的樂趣。讓學生更加愛學數(shù)學。

2教學目標⒈知識與技能目標了解皮影的相關知識,體會皮影藝術的特點。⒉過程與方法目標學習怎樣去制作剪影,最后怎樣讓剪影動起來,體驗皮影藝人的表演技能。⒊情感與價值觀目標通過對剪影知識的了解和制作剪影,增強學生對中國民間藝術的熱愛,培養(yǎng)學生的創(chuàng)造精神。

方法總結:本題結合三角形內角和定理考查反證法,解此題關鍵要懂得反證法的意義及步驟.反證法的步驟是:(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.在假設結論不成立時要注意考慮結論的反面所有可能的情況.如果只有一種,那么否定一種就可以了,如果有多種情況,則必須一一否定.三、板書設計1.等腰三角形的判定定理:有兩個角相等的三角形是等腰三角形(等角對等邊).2.反證法(1)假設結論不成立;(2)從假設出發(fā)推出矛盾;(3)假設不成立,則結論成立.解決幾何證明題時,應結合圖形,聯(lián)想我們已學過的定義、公理、定理等知識,尋找結論成立所需要的條件.要特別注意的是,不要遺漏題目中的已知條件.解題時學會分析,可以采用執(zhí)果索因(從結論出發(fā),探尋結論成立所需的條件)的方法.

一、教材分析軸對稱是現(xiàn)實生活中廣泛存在的一種現(xiàn)象,本章內容定位于生活中軸對稱現(xiàn)象的分析,全章內容按照“直觀認識——探索性質——簡單圖形——圖案設計”這一主線展開,而這節(jié)課作為全章的最后一節(jié),主要作用是將本章內容進行回顧和深化,使學生通過折疊、剪紙等一系列活動對生活中的軸對稱現(xiàn)象由“直觀感受”逐漸過渡到從“數(shù)學的角度去理解”,最后通過圖案設計再將“數(shù)學運用到生活中”。軸對稱是我們探索一些圖形的性質,認識、描述圖形形狀和位置關系的重要手段之一。在后面的學習中,還將涉及用坐標的方法對軸對稱刻畫,這將進一步深化我們對軸對稱的認識,也為“空間與圖形”后繼內容的學習打下基礎。二、學情分析學生之前已經認識了軸對稱現(xiàn)象,通過扎紙?zhí)剿髁溯S對稱的性質,并在對簡單的軸對稱圖形的認識過程中加深了對軸對稱的理解,但是對生活中的軸對稱現(xiàn)象仍然以“直觀感受”為主。

通常購買同一品種的西瓜時,西瓜的質量越大,花費的錢越多,因此人們希望西瓜瓤占整個西瓜的比例越大越好.假如我們把西瓜都看成球形,并把西瓜瓤的密度看成是均勻的,西瓜的皮厚都是d,已知球的體積公式為V=43πR3(其中R為球的半徑),求:(1)西瓜瓤與整個西瓜的體積各是多少?(2)西瓜瓤與整個西瓜的體積比是多少?(3)買大西瓜合算還是買小西瓜合算?解析:(1)根據(jù)體積公式求出即可;(2)根據(jù)(1)中的結果得出即可;(3)求出兩體積的比即可.解:(1)西瓜瓤的體積是43π(R-d)3,整個西瓜的體積是43πR3;(2)西瓜瓤與整個西瓜的體積比是43π(R-d)343πR3=(R-d)3R3;(3)由(2)知,西瓜瓤與整個西瓜的體積比是(R-d)3R3<1,故買大西瓜比買小西瓜合算.方法總結:本題能夠根據(jù)球的體積,得到兩個物體的體積比即為它們的半徑的立方比是解此題的關鍵.

解析:先求出長方形的面積,再求出綠化的面積,兩者相減即可求出剩下的面積.解:長方形的面積是xym2,綠化的面積是35x×34y=920xy(m2),則剩下的面積是xy-920xy=1120xy(m2).方法總結:掌握長方形的面積公式和單項式乘單項式法則是解題的關鍵.三、板書設計1.單項式乘以單項式的運算法則:單項式相乘,把系數(shù)、同底數(shù)冪分別相乘,作為積的因式;對于只在一個單項式里面含有的字母,則連同它的指數(shù)作為積的一個因式.2.單項式乘以單項式的應用本課時的重點是讓學生理解單項式的乘法法則并能熟練應用.要求學生在乘法的運算律以及冪的運算律的基礎上進行探究.教師在課堂上應該處于引導位置,鼓勵學生“試一試”,學生通過動手操作,能夠更為直接的理解和應用該知識點

解:(ax2+bx+1)(3x-2)=3ax3-2ax2+3bx2-2bx+3x-2.∵積不含x2項,也不含x項,∴-2a+3b=0,-2b+3=0,解得b=32,a=94,∴系數(shù)a、b的值分別是94,32.方法總結:解決此類問題首先要利用多項式乘法法則計算出展開式,合并同類項后,再根據(jù)不含某一項,可得這一項系數(shù)等于零,再列出方程解答.三、板書設計1.多項式與多項式的乘法法則:多項式和多項式相乘,先用一個多項式的每一項與另一個多項式的每一項相乘,再把所得的積相加.2.多項式與多項式乘法的應用本節(jié)知識的綜合性較強,要求學生熟練掌握前面所學的單項式與單項式相乘及單項式與多項式相乘的知識,同時為了讓學生理解并掌握多項式與多項式相乘的法則,教學中一定要精講精練,讓學生從練習中再次體會法則的內容,為以后的學習奠定基礎

各位老師、同學們:大家上午好!今天我說課的題目是《世說新語》二則之《期行》。我將從教材分析、說教法學法、說教學過程、說板書設計等幾個方面來進行我的說課。一、教材分析(一)說教材的地位和作用《世說新語》二則是語文出版社七年級上冊的文言課文。《陳太丘與友期》是《世說新語》“方正”門中的,主要是寫陳太丘之子元方聰穎機智,懂禮識儀。文中 “無信”“無禮”二詞為全篇核心,可見作者的寫作目的是借“陳元方責客”來說明“信”和“禮”的重要性。告訴學生一個道理——人必須明禮誠信。(二)說教學目標根據(jù)本教材的結構和內容分析,結合學生的認知結構及其心理特征,我制定了以下的教學目標:A:積累文言詞語,疏通文意B:培養(yǎng)語感,培養(yǎng)閱讀淺易文言文的能力。

方法總結:判斷軸對稱的條數(shù),仍然是根據(jù)定義進行判斷,判斷軸對稱圖形的關鍵是尋找對稱軸,注意不要遺漏.探究點二:兩個圖形成軸對稱如圖所示,哪一組的右邊圖形與左邊圖形成軸對稱?解析:根據(jù)軸對稱的意義,經過翻折,看兩個圖形能否完全重合,若能重合,則兩個圖形成軸對稱.解:(4)(5)(6).方法總結:動手操作或結合軸對稱的概念展開想象,在腦海中嘗試完成一個動態(tài)的折疊過程,從而得到結論.三、板書設計1.軸對稱圖形的定義2.對稱軸3.兩個圖形成軸對稱這節(jié)課充分利用多媒體教學,給學生以直觀指導,主動向學生質疑,促使學生思考與發(fā)現(xiàn),形成認識,獨立獲取知識和技能.另外,借助多媒體教學給學生創(chuàng)設寬松的學習氛圍,使學生在學習中始終保持興奮、愉悅、渴求思索的心理狀態(tài),有利于學生主體性的發(fā)揮和創(chuàng)新能力的培養(yǎng)

一個不透明的袋子中裝有5個黑球和3個白球,這些球的大小、質地完全相同,隨機從袋子中摸出4個球,則下列事件是必然事件的是( )A.摸出的4個球中至少有一個是白球B.摸出的4個球中至少有一個是黑球C.摸出的4個球中至少有兩個是黑球D.摸出的4個球中至少有兩個是白球解析:∵袋子中只有3個白球,而有5個黑球,∴摸出的4個球可能都是黑球,因此選項A是不確定事件;摸出的4個球可能都是黑球,也可以3黑1白、2黑2白、1黑3白,不管哪種情況,至少有一個球是黑球,∴選項B是必然事件;摸出的4個球可能為1黑3白,∴選項C是不確定事件;摸出的4個球可能都是黑球或1白3黑,∴選項D是不確定事件.故選B.方法總結:事件類型的判斷首先要判斷該事件發(fā)生與否是不是確定的.若是確定的,再判斷其是必然發(fā)生的(必然事件),還是必然不發(fā)生的(不可能事件).若是不確定的,則該事件是不確定事件.

解析:橫軸表示時間,縱軸表示溫度.溫度最高應找到圖象的最高點所對應的x值,即15時,A對;溫度最低應找到圖象的最低點所對應的x值,即3時,B對;這天最高溫度與最低溫度的差應讓前面的兩個y值相減,即38-22=16(℃),C錯;從圖象看出,這天0~3時,15~24時溫度在下降,D對.故選C.方法總結:認真觀察圖象,弄清楚時間是自變量,溫度是因變量,然后由圖象上的點確定自變量及因變量的對應值.三、板書設計1.用曲線型圖象表示變量間關系2.從曲線型圖象中獲取變量信息圖象法能直觀形象地表示因變量隨自變量變化的變化趨勢,可通過圖象來研究變量的某些性質,這也是數(shù)形結合的優(yōu)點,但是它也存在感性觀察不夠準確,畫面局限性大的缺點.教學中讓學生自己歸納總結,回顧反思,將知識點串連起來,完成對該部分內容的完整認識和意義建構.這對學生在實際情境中根據(jù)不同需要選擇恰當?shù)姆椒ū硎咀兞块g的關系,發(fā)展與深化思維能力是大有裨益的

解析:(1)根據(jù)圖象的縱坐標,可得比賽的路程.根據(jù)圖象的橫坐標,可得比賽的結果;(2)根據(jù)乙加速后行駛的路程除以加速后的時間,可得答案.解:(1)由縱坐標看出,這次龍舟賽的全程是1000米;由橫坐標看出,乙隊先到達終點;(2)由圖象看出,相遇是在乙加速后,加速后的路程是1000-400=600(米),加速后用的時間是3.8-2.2=1.6(分鐘),乙與甲相遇時乙的速度600÷1.6=375(米/分鐘).方法總結:解決雙圖象問題時,正確識別圖象,弄清楚兩圖象所代表的意義,從中挖掘有用的信息,明確實際意義.三、板書設計1.用折線型圖象表示變量間關系2.根據(jù)折線型圖象獲取信息解決問題經歷一般規(guī)律的探索過程,培養(yǎng)學生的抽象思維能力,經歷從實際問題中得到關系式這一過程,提升學生的數(shù)學應用能力,使學生在探索過程中體驗成功的喜悅,樹立學習的自信心.體驗生活中數(shù)學的應用價值,感受數(shù)學與人類生活的密切聯(lián)系,激發(fā)學生學數(shù)學、用數(shù)學的興趣

課程分析中專數(shù)學課程教學是專業(yè)建設與專業(yè)課程體系改革的一部分,應與專業(yè)課教學融為一體,立足于為專業(yè)課服務,解決實際生活中常見問題,結合中專學生的實際,強調數(shù)學的應用性,以滿足學生在今后的工作崗位上的實際應用為主,這也體現(xiàn)了新課標中突出應用性的理念。分段函數(shù)的實際應用在本課程中的地位:(1) 函數(shù)是中專數(shù)學學習的重點和難點,函數(shù)的思想貫穿于整個中專數(shù)學之中,分段函數(shù)在科技和生活的各個領域有著十分廣泛的應用。(2) 本節(jié)所探討學習分段函數(shù)在生活生產中的實際問題上應用,培養(yǎng)學生分析與解決問題的能力,養(yǎng)成正確的數(shù)學化理性思維的同時,形成一種意識,即數(shù)學“源于生活、寓于生活、用于生活”。教材分析 教材使用的是中等職業(yè)教育課程改革國家規(guī)劃教材,依照13級教學計劃,函數(shù)的實際應用舉例內容安排在第三章函數(shù)的最后一部分講解。本節(jié)內容是在學生熟知函數(shù)的概念,表示方法和對函數(shù)性質有一定了解的基礎上研究分段函數(shù),同時深化學生對函數(shù)概念的理解和認識,也為接下來學習指數(shù)函數(shù)和對數(shù)函數(shù)作了良好鋪墊。根據(jù)13級學生實際情況,由生活生產中的實際問題入手,求得分段函數(shù)此部分知識以學生生活常識為背景,可以引導學生分析得出。

一、關于教學目標的確定:第五章的主要內容是一元一次不等式(組)的解法及其在簡單實際問題中的探索與應用。探索不等式的基本性質是在為本章的重點一元一次不等式的解法作準備。不等式的基本性質3更是本章的難點??墒钦f不等式的基本性質這個概念既是不等式這一章的基礎概念又是學生學習的難點。因此我選擇此節(jié)課說課。教參指導我們:教學要注重和學生已有的學習經驗和生活實際相聯(lián)系,注重讓學生經歷和體會“從實際問題中抽象出數(shù)學模型,并回到實際問題中解釋和檢驗”的過程。注重“概念的實際背景與形成過程”的教學。使學生在熟悉的實際問題中,在已有的學習經驗的基礎上,經歷“嘗試—猜想—驗證”的探索過程,體會“轉化”的思想方法,體會數(shù)學的價值,激發(fā)學習興趣。在教學中要滲透函數(shù)思想。運用數(shù)學中歸納、類比的方法,理解方程與不等式的異同點。

一.情境引入:師:我們生活在一個變化的世界中,很多東西都在悄悄地發(fā)生變化你能從生活中舉出一些發(fā)生變化的例子嗎?生1:從春季到夏季氣溫在逐漸增加.生2:小樹每年都在長高長粗.生3:我杯子里的水喝一口少一口.(說著就拿起杯子喝水,引起同學哈哈大笑)師: 你這個變化中有幾個量在變化?生3:兩個,一個是喝的口數(shù),一個是水的多少?師: 它們的變化有什么聯(lián)系嗎?生3:有,隨著喝的口數(shù)的增加,瓶中的水越來越少.生4:那我的這張紙越撕越小(此時該同學順便從自己本子上撕下一張紙并將這張紙一次一次的撕下去,其他同學們點頭稱是)師: 你這個變化中又有幾個量?它們又是怎么變化的?生4:兩個,一個是撕的次數(shù),另一個是紙的大?。畮煟耗敲茨膫€量隨哪個量的變化而變化的呢?

方法總結:在等腰三角形有關計算或證明中,會遇到一些添加輔助線的問題,其頂角平分線、底邊上的高、底邊上的中線是常見的輔助線.三、板書設計1.等腰三角形的性質:等腰三角形是軸對稱圖形;等腰三角形頂角的平分線、底邊上的中線、底邊上的高重合(也稱“三線合一”),它們所在的直線都是等腰三角形的對稱軸;等腰三角形的兩個底角相等.2.運用等腰三角性質解題的一般思想方法:方程思想、整體思想和轉化思想.本節(jié)課由于采用了直觀操作以及討論交流等教學方法,從而有效地增強了學生的感性認識,提高了學生對新知識的理解與感悟,因而本節(jié)課的教學效果較好,學生對所學的新知識掌握較好,達到了教學的目的.不足之處是少數(shù)學生對等腰三角形的“三線合一”性質理解不透徹,還需要在今后的教學和作業(yè)中進一步鞏固和提高

解:(1)電動車的月產量y為隨著時間x的變化而變化,有一個時間x就有唯一一個y與之對應,月產量y是時間x的因變量;(2)6月份產量最高,1月份產量最低;(3)6月份和1月份相差最大,在1月份加緊生產,實現(xiàn)產量的增值.方法總結:觀察因變量隨自變量變化而變化的趨勢,實質是觀察自變量增大時,因變量是隨之增大還是減小.三、板書設計1.常量與變量:在一個變化過程中,數(shù)值發(fā)生變化的量為變量,數(shù)值始終不變的量稱之為常量.2.用表格表示數(shù)量間的關系:借助表格表示因變量隨自變量的變化而變化的情況.自變量和因變量是用來描述我們所熟悉的變化的事物以及自然界中出現(xiàn)的一些變化現(xiàn)象的兩個重要的量,對于我們所熟悉的變化,在用了這兩個量的描述之后更加鮮明.本節(jié)是學好本章的基礎,教學中立足于學生的認知基礎,激發(fā)學生的認知沖突,提升學生的認知水平,使學生在原有的知識基礎上迅速遷移到新知上來

解析:(1)根據(jù)AD∥BC可知∠ADC=∠ECF,再根據(jù)E是CD的中點可求出△ADE≌△FCE,根據(jù)全等三角形的性質即可解答;(2)根據(jù)線段垂直平分線的性質判斷出AB=BF即可解答.解:(1)∵AD∥BC,∴∠ADC=∠ECF.∵E是CD的中點,∴DE=EC.又∵∠AED=∠CEF,∴△ADE≌△FCE,∴FC=AD;(2)∵△ADE≌△FCE,∴AE=EF,AD=CF.又∵BE⊥AE,∴BE是線段AF的垂直平分線,∴AB=BF=BC+CF.∵AD=CF,∴AB=BC+AD.方法總結:此題主要考查線段的垂直平分線的性質等幾何知識.線段垂直平分線上的點到線段兩個端點的距離相等,利用它可以證明線段相等.探究點二:線段垂直平分線的作圖如圖,某地由于居民增多,要在公路l邊增加一個公共汽車站,A,B是路邊兩個新建小區(qū),這個公共汽車站C建在什么位置,能使兩個小區(qū)到車站的路程一樣長(要求:尺規(guī)作圖,保留作圖痕跡,不寫畫法)?

教學說明:問題(1)是借助“邊邊邊”條件判定三角形全等的知識來解釋的。因為三邊長度確定后三角形的形狀就被固定了,因此三角形具有穩(wěn)定性。問題(2)可用多媒體展示三角形穩(wěn)定性在實際生活中應用的例子。要解決問題(3),只需要在四邊形中構建出三角形結構,這樣就可以幫助其穩(wěn)定。設計意圖:通過學生動手操作,探究三角形穩(wěn)定性及生活中的應用,讓學生體驗數(shù)學來源于生活,服務于生活的辯證思想,感受數(shù)學美。 (五)總結反思,情意發(fā)展問題:通過這節(jié)課的學習你有什么收獲?多媒體演示:(1)知識方面:①三邊對應相等的兩個三角形全等,簡寫為“邊邊邊”或“SSS”。②三角形具有穩(wěn)定性。(2)技能方面:說明三角形全等時要注意公共邊的應用。
PPT全稱是PowerPoint,LFPPT為你提供免費PPT模板下載資源。讓你10秒輕松搞定幻燈片制作,打造?顏值的豐富演示文稿素材模版合集。