提供各類(lèi)精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word模板 > 教育教學(xué) > 課件教案> 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時(shí)間:2023-10-26
  • 字?jǐn)?shù):約6291字
  • 頁(yè)數(shù):約10頁(yè)
  • 格式:.docx
  • 推薦版本:Office2016及以上版本
  • 售價(jià):5 金幣 / 會(huì)員免費(fèi)

您可能喜歡的文檔

  • 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    ∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),∴S△EFP=4/3c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).由兩點(diǎn)間的距離公式|PE|=√("(" 5+3")" ^2+4^2 )=4√5,|PF|=√("(" 5"-" 3")" ^2+4^2 )=2√5,∴a=√5.又b2=c2-a2=4,故所求雙曲線的方程為x^2/5-y^2/4=1.5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;(2)以橢圓x^2/8+y^2/5=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)(3,√10);(3)a=b,經(jīng)過(guò)點(diǎn)(3,-1).解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為x^2/16-y^2/9=1.(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2√2.設(shè)雙曲線的標(biāo)準(zhǔn)方程為x^2/a^2 -y^2/b^2 =1(a>0,b>0),則有a2+b2=c2=8,9/a^2 -10/b^2 =1,解得a2=3,b2=5.故所求雙曲線的標(biāo)準(zhǔn)方程為x^2/3-y^2/5=1.(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.綜上,所求雙曲線的標(biāo)準(zhǔn)方程為x^2/8-y^2/8=1.

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿(mǎn)足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類(lèi)比用方程研究橢圓雙曲線幾何性質(zhì)的過(guò)程與方法,y2 = 2px (p>0)你認(rèn)為應(yīng)研究拋物線的哪些幾何性質(zhì),如何研究這些性質(zhì)?1. 范圍拋物線 y2 = 2px (p>0) 在 y 軸的右側(cè),開(kāi)口向右,這條拋物線上的任意一點(diǎn)M 的坐標(biāo) (x, y) 的橫坐標(biāo)滿(mǎn)足不等式 x ≥ 0;當(dāng)x 的值增大時(shí),|y| 也增大,這說(shuō)明拋物線向右上方和右下方無(wú)限延伸.拋物線是無(wú)界曲線.2. 對(duì)稱(chēng)性觀察圖象,不難發(fā)現(xiàn),拋物線 y2 = 2px (p>0)關(guān)于 x 軸對(duì)稱(chēng),我們把拋物線的對(duì)稱(chēng)軸叫做拋物線的軸.拋物線只有一條對(duì)稱(chēng)軸. 3. 頂點(diǎn)拋物線和它軸的交點(diǎn)叫做拋物線的頂點(diǎn).拋物線的頂點(diǎn)坐標(biāo)是坐標(biāo)原點(diǎn) (0, 0) .4. 離心率拋物線上的點(diǎn)M 到焦點(diǎn)的距離和它到準(zhǔn)線的距離的比,叫做拋物線的離心率. 用 e 表示,e = 1.探究如果拋物線的標(biāo)準(zhǔn)方程是〖 y〗^2=-2px(p>0), ②〖 x〗^2=2py(p>0), ③〖 x〗^2=-2py(p>0), ④

  • 拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、直線與拋物線的位置關(guān)系設(shè)直線l:y=kx+m,拋物線:y2=2px(p>0),將直線方程與拋物線方程聯(lián)立整理成關(guān)于x的方程k2x2+2(km-p)x+m2=0.(1)若k≠0,當(dāng)Δ>0時(shí),直線與拋物線相交,有兩個(gè)交點(diǎn);當(dāng)Δ=0時(shí),直線與拋物線相切,有一個(gè)切點(diǎn);當(dāng)Δ<0時(shí),直線與拋物線相離,沒(méi)有公共點(diǎn).(2)若k=0,直線與拋物線有一個(gè)交點(diǎn),此時(shí)直線平行于拋物線的對(duì)稱(chēng)軸或與對(duì)稱(chēng)軸重合.因此直線與拋物線有一個(gè)公共點(diǎn)是直線與拋物線相切的必要不充分條件.二、典例解析例5.過(guò)拋物線焦點(diǎn)F的直線交拋物線于A、B兩點(diǎn),通過(guò)點(diǎn)A和拋物線頂點(diǎn)的直線交拋物線的準(zhǔn)線于點(diǎn)D,求證:直線DB平行于拋物線的對(duì)稱(chēng)軸.【分析】設(shè)拋物線的標(biāo)準(zhǔn)方程為:y2=2px(p>0).設(shè)A(x1,y1),B(x2,y2).直線OA的方程為: = = ,可得yD= .設(shè)直線AB的方程為:my=x﹣ ,與拋物線的方程聯(lián)立化為y2﹣2pm﹣p2=0,

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿(mǎn)足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 查看更多相關(guān)Word文檔

拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)

本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程

在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再?gòu)漠?huà)法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過(guò)豐富的實(shí)例展開(kāi)教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.


坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

課程目標(biāo)

學(xué)科素養(yǎng)

A.掌握拋物線的定義及焦點(diǎn)、準(zhǔn)線的概念.

B.掌握拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程.

C.明確p的幾何意義,并能解決簡(jiǎn)單的求拋物線標(biāo)準(zhǔn)方程問(wèn)題.

D.拋物線的簡(jiǎn)單應(yīng)用

1.數(shù)學(xué)抽象:拋物線的定義

2.邏輯推理:拋物線標(biāo)準(zhǔn)方程的推導(dǎo)

3.數(shù)學(xué)運(yùn)算:根據(jù)條件求拋物線標(biāo)準(zhǔn)方程

4.直觀想象:拋物線的定義的運(yùn)用

重點(diǎn):拋物線的標(biāo)準(zhǔn)方程及其推導(dǎo)過(guò)程

難點(diǎn):求拋物線標(biāo)準(zhǔn)方程

多媒體

教學(xué)過(guò)程

教學(xué)設(shè)計(jì)意圖

核心素養(yǎng)目標(biāo)

一、問(wèn)題導(dǎo)學(xué)

我們已經(jīng)學(xué)習(xí)了圓、橢圓、雙曲線三種圓錐曲線,今天我們類(lèi)比橢圓、雙曲線的研究過(guò)程與方法,研究另一類(lèi)圓錐曲線——拋物線.

如圖,把一根直尺固定在畫(huà)圖板內(nèi),直線l的位置上,一塊三角板的一條直角邊緊靠直尺的邊緣,把一根繩子的一端固定于三角板另一條直角邊上點(diǎn)A,截取繩子的長(zhǎng)等于A到l的距離AC,并且把繩子另一端固定在圖板上的一點(diǎn)F;用一支鉛筆扣著繩子,緊靠著三角板的這條直角邊把繩子繃緊,然后使三角板緊靠著直角尺左右滑動(dòng),這樣鉛筆就畫(huà)出了一條曲線,這條曲線就叫做拋物線.

1.拋物線的定義

概念形成

比較橢圓、雙曲線標(biāo)準(zhǔn)方程的建立過(guò)程,你認(rèn)為如何建立坐標(biāo)系,可能使所求拋物線的方程形式簡(jiǎn)單?

同橢圓雙曲線的情形一樣,下面我們用坐標(biāo)法來(lái)探討嘗試與發(fā)現(xiàn)中的問(wèn)題,并求出拋物線的標(biāo)準(zhǔn)方程。如圖為軸,線段的垂直平分線為軸,建立平面直角坐標(biāo)系,此時(shí),拋物線的焦點(diǎn)為

設(shè)M 是拋物線上一點(diǎn),則M到F的距離為則M到直線的距離為,

所以=

上式兩邊平方,整理可得=2 ①

建立橢圓、雙曲線的標(biāo)準(zhǔn)方程時(shí),選擇不同的坐標(biāo)系我們得到了不同形式的標(biāo)準(zhǔn)方程。拋物線的標(biāo)準(zhǔn)方程有哪些不同的形式?請(qǐng)?zhí)骄恐筇顚?xiě)下表

2.拋物線的標(biāo)準(zhǔn)方程

圖形

標(biāo)準(zhǔn)方程

焦點(diǎn)坐標(biāo)

準(zhǔn)線方程


y2=2px(p>0)

F

x=-


y2=-2px(p>0)

F

x=


x2=2py(p>0)

F

y=-


x2=-2py(p>0)

F

y=

1.思考辨析(正確的打“√”,錯(cuò)誤的打“”)

(1)平面內(nèi)到一定點(diǎn)距離與到一定直線距離相等的點(diǎn)的軌跡一定是拋物線. ( )

(2)y=4x2的焦點(diǎn)坐標(biāo)為(1,0). ( )

(3)以(0,1)為焦點(diǎn)的拋物線的標(biāo)準(zhǔn)方程為x2=4y. ( )

[提示] (1) (2) (3)√

2.拋物線y2=8x的焦點(diǎn)到準(zhǔn)線的距離是( )

A.1 B.2 C.4 D.8

C [由y2=8x得p=4,即焦點(diǎn)到準(zhǔn)線的距離為4.]

3.拋物線x=4y2的準(zhǔn)線方程是( )

A.y= B.y=-1

C.x=- D.x=

C [由x=4y2得y2=x,故準(zhǔn)線方程為x=-.]

4.拋物線y=4ax2(a∈R且a≠0)的焦點(diǎn)坐標(biāo)為_(kāi)_______.

[把方程化為標(biāo)準(zhǔn)形式為x2=y(tǒng),

所以焦點(diǎn)在y軸上,坐標(biāo)為.]

二、典例解析

例1. 分別求滿(mǎn)足下列條件的拋物線的標(biāo)準(zhǔn)方程.

(1)準(zhǔn)線方程為2y+4=0;

(2)過(guò)點(diǎn)(3,-4);

(3)焦點(diǎn)在直線x+3y+15=0上.

[思路探究] →

→→.

[解] (1)準(zhǔn)線方程為2y+4=0,即y=-2,

故拋物線焦點(diǎn)在y軸的正半軸上,

設(shè)其方程為x2=2py(p>0).又=2,

∴2p=8,故所求拋物線的標(biāo)準(zhǔn)方程為x2=8y.

(2)∵點(diǎn)(3,-4)在第四象限,∴拋物線開(kāi)口向右或向下,

設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=2px(p>0)或x2=-2p1y(p1>0).

把點(diǎn)(3,-4)的坐標(biāo)分別代入y2=2px和x2=-2p1y中,

得(-4)2=2p3,32=-2p1(-4),即2p=,2p1=.

∴所求拋物線的標(biāo)準(zhǔn)方程為y2=x或x2=-y.

(3)令x=0得y=-5;令y=0得x=-15.

∴拋物線的焦點(diǎn)為(0,-5)或(-15,0).

∴所求拋物線的標(biāo)準(zhǔn)方程為x2=-20y或y2=-60x.

1.用待定系數(shù)法求拋物線標(biāo)準(zhǔn)方程的步驟

2.求拋物線的標(biāo)準(zhǔn)方程時(shí)需注意的三個(gè)問(wèn)題

(1)把握開(kāi)口方向與方程一次項(xiàng)系數(shù)的對(duì)應(yīng)關(guān)系;

(2)當(dāng)拋物線的位置沒(méi)有確定時(shí),可設(shè)方程為y2=mx(m≠0)或x2=ny(n≠0),這樣可以減少討論不同情況的次數(shù);

(3)注意p與的幾何意義.

跟蹤訓(xùn)練1.根據(jù)下列條件分別求出拋物線的標(biāo)準(zhǔn)方程:

(1)準(zhǔn)線方程為y=;

(2)焦點(diǎn)在y軸上,焦點(diǎn)到準(zhǔn)線的距離為5;

(3)經(jīng)過(guò)點(diǎn)(-3,-1);

(4)焦點(diǎn)為直線3x-4y-12=0與坐標(biāo)軸的交點(diǎn).

[解] (1)因?yàn)閽佄锞€的準(zhǔn)線交y軸于正半軸,且=,

則p=,所以所求拋物線的標(biāo)準(zhǔn)方程為x2=-y.

(2)已知拋物線的焦點(diǎn)在y軸上,可設(shè)方程為x2=2my(m≠0),由焦點(diǎn)到準(zhǔn)線的距離為5,知|m|=5,m=5,所以滿(mǎn)足條件的拋物線有兩條,它們的標(biāo)準(zhǔn)方程分別為x2=10y和x2=-10y.

(3)∵點(diǎn)(-3,-1)在第三象限,

∴設(shè)所求拋物線的標(biāo)準(zhǔn)方程為

y2=-2px(p>0)或x2=-2py(p>0).

若拋物線的標(biāo)準(zhǔn)方程為y2=-2px(p>0),

則由(-1)2=-2p(-3),解得p=;

若拋物線的標(biāo)準(zhǔn)方程為x2=-2py(p>0),

則由(-3)2=-2p(-1),解得p=.

∴所求拋物線的標(biāo)準(zhǔn)方程為y2=-x或x2=-9y.

(4)對(duì)于直線方程3x-4y-12=0,令x=0,得y=-3;

令y=0,得x=4,

∴拋物線的焦點(diǎn)為(0,-3)或(4,0).

當(dāng)焦點(diǎn)為(0,-3)時(shí),=3,

∴p=6,此時(shí)拋物線的標(biāo)準(zhǔn)方程為x2=-12y;

當(dāng)焦點(diǎn)為(4,0)時(shí),=4,

∴p=8,此時(shí)拋物線的標(biāo)準(zhǔn)方程為y2=16x.

∴所求拋物線的標(biāo)準(zhǔn)方程為x2=-12y或y2=16x.

例2. 一種衛(wèi)星接收天線的軸截面如圖所示,衛(wèi)星波束呈近似平行狀態(tài)射入軸截面為拋物線的接收天線,經(jīng)反射聚集到焦點(diǎn)處,已知接收天線的口徑(直徑)為4.8m,深度為0.5m.

(1)試建立適當(dāng)?shù)淖鴺?biāo)系,求拋物線的標(biāo)準(zhǔn)方程和焦點(diǎn)坐標(biāo).

(2)為了增強(qiáng)衛(wèi)星波束的接收,擬將接收天線的口徑增大為5.2m,

求此時(shí)星波束反射聚集點(diǎn)的坐標(biāo).

典例解析

解:(1)以頂點(diǎn)為原點(diǎn),焦點(diǎn)所在直線為x軸,建立直角坐標(biāo)系xOy,

設(shè)拋物線的方程為y2=2px(p>0),

代入點(diǎn)(0.5,2.4),可得2.42=2p?0.5,

解得p=5.76,即拋物線的方程為y2=11.52x,

焦點(diǎn)為(2.88,0);

(2)設(shè)拋物線的方程為y2=2mx(m>0),

代入點(diǎn)(0.5,2.6),可得2.62=2m?0.5,解得m=6.76,

即有拋物線的方程為y2=13.52x,焦點(diǎn)為(3.38,0).

求解拋物線實(shí)際應(yīng)用題的步驟

跟蹤訓(xùn)練2.一輛卡車(chē)高3 m,寬1.6 m,欲通過(guò)斷面為拋物線形的隧道,如圖所示,已知拱口寬AB恰好是拱高OD的4倍.若拱口寬為a m,求能使卡車(chē)通過(guò)的a的最小整數(shù)值.

[解] 以拱頂O為原點(diǎn),拱高OD所在直線為y軸,建立直角坐標(biāo)系,如圖所示.

設(shè)拋物線方程為x2=-2py(p>0).

∵AB是OD的4倍,∴點(diǎn)B的坐標(biāo)為.

由點(diǎn)B在拋物線上,得=-2p,

∴p=.∴拋物線方程為x2=-ay.

設(shè)點(diǎn)E(0.8,y0)為拋物線上一點(diǎn),

代入方程x2=-ay,得0.82=-ay0,

∴y0=-,

∴點(diǎn)E到拱底AB的距離h=-|y0|=-,

令h>3,則->3,

解得a>6+或a<6-(舍去).

∴a的最小整數(shù)值為13.

類(lèi)比橢圓和雙曲線的學(xué)習(xí),制定研究路線圖。發(fā)展學(xué)生數(shù)學(xué)抽象、數(shù)學(xué)運(yùn)算、直觀想象的核心素養(yǎng)。

通過(guò)拋物線標(biāo)準(zhǔn)方程的推導(dǎo),進(jìn)一步體會(huì)數(shù)形結(jié)合的思想方法。發(fā)展學(xué)生數(shù)學(xué)運(yùn)算,數(shù)學(xué)抽象和數(shù)學(xué)建模的核心素養(yǎng)。

通過(guò)典型例題,熟練掌握根據(jù)條件求拋物線的方法,提升學(xué)生數(shù)學(xué)建模,數(shù)形結(jié)合,及方程思想,發(fā)展學(xué)生邏輯推理,直觀想象、數(shù)學(xué)抽象和數(shù)學(xué)運(yùn)算的核心素養(yǎng)。

三、達(dá)標(biāo)檢測(cè)

1.準(zhǔn)線與x軸垂直,且經(jīng)過(guò)點(diǎn)(1,-)的拋物線的標(biāo)準(zhǔn)方程是( )

A.y2=-2x B.y2=2x C.x2=2y D.x2=-2y

B [由題意可設(shè)拋物線的標(biāo)準(zhǔn)方程為y2=ax,則(-)2=a,

解得a=2,因此拋物線的標(biāo)準(zhǔn)方程為y2=2x,故選B.]

2.過(guò)點(diǎn)A(3,0)且與y軸相切的圓的圓心軌跡為( )

A.圓 B.橢圓 C.直線 D.拋物線

D [由題意可知,動(dòng)圓的圓心到點(diǎn)A的距離與到直線y軸的距離相等,滿(mǎn)足拋物線的定義,故應(yīng)選D.]

3.設(shè)拋物線y2=8x上一點(diǎn)P到y(tǒng)軸的距離是4,則點(diǎn)P到該拋物線焦點(diǎn)的距離是________.

6 [由拋物線的方程得==2,再根據(jù)拋物線的定義,

可知所求距離為4+2=6.]

4.如圖是拋物線形拱橋,當(dāng)水面在l時(shí),拱頂離水面2米,水面寬4米.水位下降1米后,水面寬________米

2 [建立如圖所示的平面直角坐標(biāo)系,設(shè)拋物線的方程為x2=-2py,則點(diǎn)(2,-2)在拋物線上,代入可得p=1,所以x2=-2y.當(dāng)y=-3時(shí),x2=6,所以水面寬為2米.

5.若拋物線y2=-2px(p>0)上有一點(diǎn)M,其橫坐標(biāo)為-9,它到焦點(diǎn)的距離為10,求點(diǎn)M的坐標(biāo).

[解] 由拋物線方程y2=-2px(p>0),得其焦點(diǎn)坐標(biāo)為F,準(zhǔn)線方程為x=.設(shè)點(diǎn)M到準(zhǔn)線的距離為d,則d=|MF|=10,即-(-9)=10,得p=2,故拋物線方程為y2=-4x.

由點(diǎn)M(-9,y)在拋物線上,得y=6,故點(diǎn)M的坐標(biāo)為(-9,6)或(-9,-6).

6.若位于y軸右側(cè)的動(dòng)點(diǎn)M到F的距離比它到y(tǒng)軸的距離大.求點(diǎn)M的軌跡方程.

[解]由于位于y軸右側(cè)的動(dòng)點(diǎn)M到F的距離比

它到y(tǒng)軸的距離大,

所以動(dòng)點(diǎn)M到F的距離與它到直線l:x=-的距離相等.

由拋物線的定義知?jiǎng)狱c(diǎn)M的軌跡是以F為焦點(diǎn),

l為準(zhǔn)線的拋物線(不包含原點(diǎn)),

其方程應(yīng)為y2=2px(p>0)的形式,

而=,所以p=1,2p=2,

故點(diǎn)M的軌跡方程為y2=2x(x≠0).

通過(guò)練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過(guò)學(xué)生解決問(wèn)題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。


最新課件教案文檔
  • 精選高中生期末評(píng)語(yǔ)

    精選高中生期末評(píng)語(yǔ)

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專(zhuān)注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺(jué)運(yùn)用的創(chuàng)新理論研究新情況、解決新問(wèn)題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開(kāi)展好各類(lèi)理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營(yíng)造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問(wèn)題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開(kāi)展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營(yíng)發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專(zhuān)業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。

  • XX區(qū)民政局黨支部開(kāi)展主題教育工作情況總結(jié)報(bào)告

    XX區(qū)民政局黨支部開(kāi)展主題教育工作情況總結(jié)報(bào)告

    二要專(zhuān)注于解決問(wèn)題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問(wèn)題,并針對(duì)科技工作中存在的問(wèn)題,采取實(shí)際措施,推動(dòng)問(wèn)題的實(shí)際解決。三要專(zhuān)注于急難愁盼問(wèn)題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問(wèn)題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問(wèn)題,并成功解決其中7個(gè)問(wèn)題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來(lái),我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見(jiàn)》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開(kāi)工在即,但項(xiàng)目開(kāi)工前還有許多實(shí)際問(wèn)題亟需解決。結(jié)合“到一線去”專(zhuān)項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開(kāi)創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國(guó)特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國(guó)經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿(mǎn)意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開(kāi)展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國(guó)家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評(píng)語(yǔ)

    精選高中生期末評(píng)語(yǔ)

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專(zhuān)注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 5月份主題教育工作情況總結(jié)匯報(bào)

    5月份主題教育工作情況總結(jié)匯報(bào)

    一是XX單位下轄的部分黨支部和黨員干部個(gè)人的自我檢視不夠,特別是抓整改的措施落實(shí)得還不夠全面,還有一些問(wèn)題沒(méi)有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實(shí)際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問(wèn)題導(dǎo)向,采取積極有效措施徹底解決以上存在的問(wèn)題,確保主題教育實(shí)現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動(dòng)性和自覺(jué)性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書(shū)記的要求,持之以恒,發(fā)揚(yáng)“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實(shí)釘牢。二是主動(dòng)運(yùn)用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅(jiān)定地與上級(jí)黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識(shí)擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點(diǎn),圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實(shí)實(shí)推進(jìn)中心工作。

  • ××縣招商局2024年上半年工作總結(jié)

    ××縣招商局2024年上半年工作總結(jié)

    二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國(guó)供銷(xiāo)集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶(hù)過(guò)程中存在的困難和問(wèn)題,力爭(zhēng)早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過(guò)“比實(shí)績(jī)、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營(yíng)造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。

  • ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    (五)實(shí)施融合促進(jìn)工程,切實(shí)發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅(jiān)持推動(dòng)黨建與業(yè)務(wù)工作深度融合,堅(jiān)持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實(shí)、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動(dòng)基層治理體系和治理能力現(xiàn)代化的實(shí)施意見(jiàn)》,組織開(kāi)展“我為群眾辦實(shí)事”“雙報(bào)到”實(shí)踐活動(dòng)300余次。邀請(qǐng)市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報(bào)告”警營(yíng)開(kāi)放日活動(dòng),在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來(lái)的忠誠(chéng)擔(dān)當(dāng)、清正廉潔、無(wú)私奉獻(xiàn)的,選樹(shù)28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個(gè)先進(jìn)基層黨組織,充分發(fā)揮正向激勵(lì)作用,營(yíng)造學(xué)習(xí)典型、爭(zhēng)做典型、弘揚(yáng)典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。

  • 《2019—2024年全國(guó)黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    《2019—2024年全國(guó)黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    一是及時(shí)傳達(dá)學(xué)習(xí)xxx總書(shū)記重要指示精神。堅(jiān)持把學(xué)習(xí)貫徹xxx總書(shū)記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會(huì)及時(shí)傳達(dá)學(xué)習(xí),并就貫徹落實(shí)指示精神提出具體措施,扎實(shí)抓好我局領(lǐng)導(dǎo)班子和干部隊(duì)伍建設(shè),以實(shí)際工作業(yè)績(jī)彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅(jiān)持把考察了解班子和干部的功夫下在平時(shí),定期開(kāi)展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點(diǎn)了解班子運(yùn)行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽(tīng)取干部群眾對(duì)班子和干部的評(píng)價(jià),掌握班子成員個(gè)人思想動(dòng)態(tài)和意愿訴求。同時(shí),將研判中發(fā)現(xiàn)的政治堅(jiān)定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實(shí)做好干部?jī)?chǔ)備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實(shí)干部監(jiān)督工作聯(lián)席會(huì)議制度,定期與紀(jì)檢、公檢法、信訪、審計(jì)等部門(mén)溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。

  • “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    2024年是XX油田剛性推進(jìn)“三年一盤(pán)棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實(shí)現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅(jiān)持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點(diǎn),邁向新征程,公司既面對(duì)難得發(fā)展機(jī)遇,也面臨不少風(fēng)險(xiǎn)挑戰(zhàn)。開(kāi)展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng),就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時(shí)代中國(guó)特色社會(huì)主義思想和黨的XX大精神,全面貫徹落實(shí)中油集團(tuán)公司2024年工作會(huì)議和油田公司、公司“兩會(huì)”各項(xiàng)工作部署,始終不忘“我為祖國(guó)獻(xiàn)石油”的初心,深刻認(rèn)識(shí)油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅(jiān)定“服務(wù)油田開(kāi)發(fā)”主導(dǎo)思想不動(dòng)搖,圍繞“12345”發(fā)展戰(zhàn)略,推動(dòng)服務(wù)水平再提檔、再升級(jí),加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。