提供各類精美PPT模板下載
當(dāng)前位置:首頁(yè) > Word模板 > 教育教學(xué) > 課件教案> 雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)
  • 收藏模板
    下載模板
  • 模板信息
  • 更新時(shí)間:2023-10-26
  • 字?jǐn)?shù):約5827字
  • 頁(yè)數(shù):約10頁(yè)
  • 格式:.docx
  • 推薦版本:Office2016及以上版本
  • 售價(jià):5 金幣 / 會(huì)員免費(fèi)

您可能喜歡的文檔

  • 拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    拋物線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)拋物線及其標(biāo)準(zhǔn)方程在經(jīng)歷了橢圓和雙曲線的學(xué)習(xí)后再學(xué)習(xí)拋物線,是在學(xué)生原有認(rèn)知的基礎(chǔ)上從幾何與代數(shù)兩 個(gè)角度去認(rèn)識(shí)拋物線.教材在拋物線的定義這個(gè)內(nèi)容的安排上是:先從直觀上認(rèn)識(shí)拋物線,再?gòu)漠?huà)法中提煉出拋物線的幾何特征,由此抽象概括出拋物線的定義,最后是拋物線定義的簡(jiǎn)單應(yīng)用.這樣的安排不僅體現(xiàn)出《課程標(biāo)準(zhǔn)》中要求通過(guò)豐富的實(shí)例展開(kāi)教學(xué)的理念,而且符合學(xué)生從具體到抽象的認(rèn)知規(guī)律,有利于學(xué)生對(duì)概念的學(xué)習(xí)和理解.坐標(biāo)法的教學(xué)貫穿了整個(gè)“圓錐曲線方程”一章,是學(xué)生應(yīng)重點(diǎn)掌握的基本數(shù)學(xué)方法 運(yùn)動(dòng)變化和對(duì)立統(tǒng)一的思想觀點(diǎn)在這節(jié)知識(shí)中得到了突出體現(xiàn),我們必須充分利用好這部分教材進(jìn)行教學(xué)

  • 圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    圓的標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    (1)幾何法它是利用圖形的幾何性質(zhì),如圓的性質(zhì)等,直接求出圓的圓心和半徑,代入圓的標(biāo)準(zhǔn)方程,從而得到圓的標(biāo)準(zhǔn)方程.(2)待定系數(shù)法由三個(gè)獨(dú)立條件得到三個(gè)方程,解方程組以得到圓的標(biāo)準(zhǔn)方程中三個(gè)參數(shù),從而確定圓的標(biāo)準(zhǔn)方程.它是求圓的方程最常用的方法,一般步驟是:①設(shè)——設(shè)所求圓的方程為(x-a)2+(y-b)2=r2;②列——由已知條件,建立關(guān)于a,b,r的方程組;③解——解方程組,求出a,b,r;④代——將a,b,r代入所設(shè)方程,得所求圓的方程.跟蹤訓(xùn)練1.已知△ABC的三個(gè)頂點(diǎn)坐標(biāo)分別為A(0,5),B(1,-2),C(-3,-4),求該三角形的外接圓的方程.[解] 法一:設(shè)所求圓的標(biāo)準(zhǔn)方程為(x-a)2+(y-b)2=r2.因?yàn)锳(0,5),B(1,-2),C(-3,-4)都在圓上,所以它們的坐標(biāo)都滿足圓的標(biāo)準(zhǔn)方程,于是有?0-a?2+?5-b?2=r2,?1-a?2+?-2-b?2=r2,?-3-a?2+?-4-b?2=r2.解得a=-3,b=1,r=5.故所求圓的標(biāo)準(zhǔn)方程是(x+3)2+(y-1)2=25.

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(1)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    問(wèn)題導(dǎo)學(xué)類比橢圓幾何性質(zhì)的研究,你認(rèn)為應(yīng)該研究雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的哪些幾何性質(zhì),如何研究這些性質(zhì)1、范圍利用雙曲線的方程求出它的范圍,由方程x^2/a^2 -y^2/b^2 =1可得x^2/a^2 =1+y^2/b^2 ≥1 于是,雙曲線上點(diǎn)的坐標(biāo)( x , y )都適合不等式,x^2/a^2 ≥1,y∈R所以x≥a 或x≤-a; y∈R2、對(duì)稱性 x^2/a^2 -y^2/b^2 =1 (a>0,b>0),關(guān)于x軸、y軸和原點(diǎn)都是對(duì)稱。x軸、y軸是雙曲線的對(duì)稱軸,原點(diǎn)是對(duì)稱中心,又叫做雙曲線的中心。3、頂點(diǎn)(1)雙曲線與對(duì)稱軸的交點(diǎn),叫做雙曲線的頂點(diǎn) .頂點(diǎn)是A_1 (-a,0)、A_2 (a,0),只有兩個(gè)。(2)如圖,線段A_1 A_2 叫做雙曲線的實(shí)軸,它的長(zhǎng)為2a,a叫做實(shí)半軸長(zhǎng);線段B_1 B_2 叫做雙曲線的虛軸,它的長(zhǎng)為2b,b叫做雙曲線的虛半軸長(zhǎng)。(3)實(shí)軸與虛軸等長(zhǎng)的雙曲線叫等軸雙曲線4、漸近線(1)雙曲線x^2/a^2 -y^2/b^2 =1 (a>0,b>0),的漸近線方程為:y=±b/a x(2)利用漸近線可以較準(zhǔn)確的畫(huà)出雙曲線的草圖

  • 雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    雙曲線的簡(jiǎn)單幾何性質(zhì)(2)教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    二、典例解析例4.如圖,雙曲線型冷卻塔的外形,是雙曲線的一部分,已知塔的總高度為137.5m,塔頂直徑為90m,塔的最小直徑(喉部直徑)為60m,喉部標(biāo)高112.5m,試建立適當(dāng)?shù)淖鴺?biāo)系,求出此雙曲線的標(biāo)準(zhǔn)方程(精確到1m)解:設(shè)雙曲線的標(biāo)準(zhǔn)方程為 ,如圖所示:為喉部直徑,故 ,故雙曲線方程為 .而 的橫坐標(biāo)為塔頂直徑的一半即 ,其縱坐標(biāo)為塔的總高度與喉部標(biāo)高的差即 ,故 ,故 ,所以 ,故雙曲線方程為 .例5.已知點(diǎn) 到定點(diǎn) 的距離和它到定直線l: 的距離的比是 ,則點(diǎn) 的軌跡方程為?解:設(shè)點(diǎn) ,由題知, ,即 .整理得: .請(qǐng)你將例5與橢圓一節(jié)中的例6比較,你有什么發(fā)現(xiàn)?例6、 過(guò)雙曲線 的右焦點(diǎn)F2,傾斜角為30度的直線交雙曲線于A,B兩點(diǎn),求|AB|.分析:求弦長(zhǎng)問(wèn)題有兩種方法:法一:如果交點(diǎn)坐標(biāo)易求,可直接用兩點(diǎn)間距離公式代入求弦長(zhǎng);法二:但有時(shí)為了簡(jiǎn)化計(jì)算,常設(shè)而不求,運(yùn)用韋達(dá)定理來(lái)處理.解:由雙曲線的方程得,兩焦點(diǎn)分別為F1(-3,0),F2(3,0).因?yàn)橹本€AB的傾斜角是30°,且直線經(jīng)過(guò)右焦點(diǎn)F2,所以,直線AB的方程為

  • 直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    直線的一般式方程教學(xué)設(shè)計(jì)人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)

    解析:當(dāng)a0時(shí),直線ax-by=1在x軸上的截距1/a0,在y軸上的截距-1/a>0.只有B滿足.故選B.答案:B 3.過(guò)點(diǎn)(1,0)且與直線x-2y-2=0平行的直線方程是( ) A.x-2y-1=0 B.x-2y+1=0C.2x+y=2=0 D.x+2y-1=0答案A 解析:設(shè)所求直線方程為x-2y+c=0,把點(diǎn)(1,0)代入可求得c=-1.所以所求直線方程為x-2y-1=0.故選A.4.已知兩條直線y=ax-2和3x-(a+2)y+1=0互相平行,則a=________.答案:1或-3 解析:依題意得:a(a+2)=3×1,解得a=1或a=-3.5.若方程(m2-3m+2)x+(m-2)y-2m+5=0表示直線.(1)求實(shí)數(shù)m的范圍;(2)若該直線的斜率k=1,求實(shí)數(shù)m的值.解析: (1)由m2-3m+2=0,m-2=0,解得m=2,若方程表示直線,則m2-3m+2與m-2不能同時(shí)為0,故m≠2.(2)由-?m2-3m+2?m-2=1,解得m=0.

  • 查看更多相關(guān)Word文檔

雙曲線及其標(biāo)準(zhǔn)方程教學(xué)設(shè)計(jì)

本節(jié)課選自《2019人教A版高中數(shù)學(xué)選擇性必修第一冊(cè)》第二章《直線和圓的方程》,本節(jié)課主要學(xué)習(xí)雙曲線及其標(biāo)準(zhǔn)方程

學(xué)生初步認(rèn)識(shí)圓錐曲線是從橢圓開(kāi)始的,雙曲線的學(xué)習(xí)是對(duì)其研究?jī)?nèi)容的進(jìn)一步深化和提高。如果雙曲線研究的透徹、清楚,那么拋物線的學(xué)習(xí)就會(huì)順理成章。所以說(shuō)本節(jié)課的作用就是縱向承接橢圓定義和標(biāo)準(zhǔn)方程的研究,橫向加深對(duì)雙曲線的標(biāo)準(zhǔn)方程及簡(jiǎn)單幾何性質(zhì)的理解與應(yīng)用。


從高考大綱要求和課程標(biāo)準(zhǔn)角度來(lái)講,雙曲線的定義、標(biāo)準(zhǔn)方程作為了解內(nèi)容,在高考的考查當(dāng)中以選擇、填空為主。正因如此,學(xué)生在學(xué)習(xí)過(guò)程當(dāng)中對(duì)雙曲線缺少應(yīng)有的重視,成為了學(xué)生的一個(gè)失分點(diǎn)。而且由于學(xué)生對(duì)橢圓與雙曲線的區(qū)別與聯(lián)系認(rèn)識(shí)不夠,無(wú)法做到知識(shí)與方法的遷移,在學(xué)習(xí)雙曲線時(shí)極易與橢圓混淆。在教學(xué)中要時(shí)刻注意運(yùn)用類比的方法,讓學(xué)生充分的類比體會(huì)橢圓與雙曲線的異同點(diǎn),使得橢圓與雙曲線的學(xué)習(xí)能相互促進(jìn)。

課程目標(biāo)

學(xué)科素養(yǎng)

A.掌握雙曲線的標(biāo)準(zhǔn)方程及其求法.

B.會(huì)利用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡(jiǎn)單實(shí)際問(wèn)題.

C.與橢圓的標(biāo)準(zhǔn)方程進(jìn)行比較,并加以區(qū)分.

1.數(shù)學(xué)抽象:雙曲線的定義

2.邏輯推理:運(yùn)用定義推導(dǎo)雙曲線的標(biāo)準(zhǔn)方程

3.數(shù)學(xué)運(yùn)算:雙曲線標(biāo)準(zhǔn)方程的求法

4.數(shù)學(xué)建模:運(yùn)用雙曲線解法實(shí)際問(wèn)題

5.直觀想象:雙曲線及其標(biāo)準(zhǔn)方程

重點(diǎn):用雙曲線的定義和標(biāo)準(zhǔn)方程解決簡(jiǎn)單實(shí)際問(wèn)題.

難點(diǎn):雙曲線的標(biāo)準(zhǔn)方程及其求法.

多媒體

教學(xué)過(guò)程

教學(xué)設(shè)計(jì)意圖

核心素養(yǎng)目標(biāo)

一、情景導(dǎo)學(xué)

雙曲線也是具有廣泛應(yīng)用的一種圓錐曲線,如發(fā)電廠冷卻塔的外形、通過(guò)聲音時(shí)差測(cè)定定位等都要用到雙曲線的性質(zhì)。本節(jié)我們將類比橢圓的研究方法研究雙曲線的有關(guān)問(wèn)題。

1.雙曲線的定義

從橢圓的情形一樣,下面我們用坐標(biāo)法來(lái)探討嘗試與發(fā)現(xiàn)中的問(wèn)題,并求出雙曲線的標(biāo)準(zhǔn)方程。

以所在直線為軸,線段的垂直平分線為軸,建立平面直角坐標(biāo)系,

此時(shí)雙曲線的焦點(diǎn)分別為

且與①右邊同時(shí)取正號(hào)或負(fù)號(hào),①+ 整理得

=+ ③

將③式平方再整理得 ④

因?yàn)? ,所以>0

設(shè)=

且,則④可化為 (>0,>0)

設(shè)雙曲線的焦點(diǎn)為 ,焦距為,而且雙曲線上的動(dòng)點(diǎn)P滿足

2a其中,以所在直線為軸,線段的垂直平分線為軸,建立平面直角坐標(biāo)系,如圖所示,此時(shí);雙曲線的標(biāo)準(zhǔn)方程是什么?

2.雙曲線的標(biāo)準(zhǔn)方程

焦點(diǎn)位置

焦點(diǎn)在x軸上

焦點(diǎn)在y軸上

圖形



標(biāo)準(zhǔn)方程

(a>0,b>0)

(a>0,b>0)

焦點(diǎn)

F1(-c,0),F2(c,0)

F1(0,-c),F2(0,c)

a,b,c的關(guān)系

b2=c2-a2

雙曲線與橢圓的比較

橢圓

雙曲線

定義

|MF1|+|MF2|=2a

(2a>|F1F2|)

||MF1|-|MF2||=2a

(0<2a<|F1F2|)

a,b,c的關(guān)系

b2=a2-c2

b2=c2-a2

焦點(diǎn)在

x軸上



焦點(diǎn)在

y軸上



1.在雙曲線的定義中,若去掉條件0<2a<|F1F2|,則點(diǎn)的軌跡是怎樣的?

提示:①當(dāng)2a等于|F1F2|時(shí),動(dòng)點(diǎn)的軌跡是以F1,F2為端點(diǎn)的兩條方向相反的射線(包括端點(diǎn)).

②當(dāng)2a大于|F1F2|時(shí),動(dòng)點(diǎn)的軌跡不存在.

③當(dāng)2a等于零時(shí),動(dòng)點(diǎn)軌跡為線段F1F2的垂直平分線.

2.判斷

(1)平面內(nèi)到兩定點(diǎn)的距離的差等于常數(shù)(小于兩定點(diǎn)間距離)的點(diǎn)的軌跡是雙曲線.( )

(2)平面內(nèi)到點(diǎn)F1(0,4),F2(0,-4)的距離之差等于5的點(diǎn)的軌跡是雙曲線.( )

(3)平面內(nèi)到點(diǎn)F1(0,4),F2(0,-4)的距離之差的絕對(duì)值等于8的點(diǎn)的軌跡是雙曲線.( )

答案:(1) (2) (3)

3.過(guò)點(diǎn)(1,1),且的雙曲線的標(biāo)準(zhǔn)方程是( )

A.-y2=1 B.-x2=1

C.x2-=1 D.-y2=1或-x2=1

解析:∵,∴b2=2a2.

當(dāng)焦點(diǎn)在x軸上時(shí),設(shè)雙曲線方程為=1,

將點(diǎn)(1,1)代入方程中,得a2=.

此時(shí)雙曲線的標(biāo)準(zhǔn)方程為-y2=1.同理求得焦點(diǎn)在y軸上時(shí),雙曲線的標(biāo)準(zhǔn)方程為-x2=1.答案:D

二、典例解析

例1求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

(1)焦點(diǎn)在x軸上,a=2,經(jīng)過(guò)點(diǎn)A(-5,2);

(2)經(jīng)過(guò)兩點(diǎn)A(-7,-6),B(2,3).

分析(1)設(shè)雙曲線方程為=1(a>0,b>0),代入點(diǎn)的坐標(biāo),解方程即可得到.(2)可設(shè)雙曲線方程為mx2-ny2=1,代入點(diǎn)的坐標(biāo),得到方程組,解方程組即可得到.

解:(1)設(shè)雙曲線方程為=1(a>0,b>0),

則a=2=1,解得b2=16,則雙曲線的標(biāo)準(zhǔn)方程為=1.

(2)設(shè)雙曲線方程為mx2-ny2=1,

則有解得則雙曲線的標(biāo)準(zhǔn)方程為=1.

求雙曲線的標(biāo)準(zhǔn)方程與求橢圓的標(biāo)準(zhǔn)方程的方法相似,可以先根據(jù)其焦點(diǎn)位置設(shè)出標(biāo)準(zhǔn)方程,然后用待定系數(shù)法求出a,b的值.若焦點(diǎn)位置不確定,可按焦點(diǎn)在x軸和y軸上兩種情況討論求解,此方法思路清晰,但過(guò)程復(fù)雜.若雙曲線過(guò)兩定點(diǎn),可設(shè)其方程為mx2+ny2=1(mn<0),通過(guò)解方程組即可確定m,n,避免了討論,從而簡(jiǎn)化求解過(guò)程.

跟蹤訓(xùn)練1 根據(jù)下列條件,求雙曲線的標(biāo)準(zhǔn)方程.

(1)焦點(diǎn)在x軸上,經(jīng)過(guò)點(diǎn)P(4,-2)和點(diǎn)Q(2,2);

(2)過(guò)點(diǎn)P,Q且焦點(diǎn)在坐標(biāo)軸上.

解:(1)因?yàn)榻裹c(diǎn)在x軸上,

可設(shè)雙曲線方程為=1(a>0,b>0),

將點(diǎn)(4,-2)和(2,2)代入方程得

解得a2=8,b2=4,

所以雙曲線的標(biāo)準(zhǔn)方程為=1.

(2)設(shè)雙曲線的方程為Ax2+By2=1,AB<0.

因?yàn)辄c(diǎn)P,Q在雙曲線上,

則解得

故雙曲線的標(biāo)準(zhǔn)方程為=1.

跟蹤訓(xùn)練2. “神舟”九號(hào)飛船返回艙順利到達(dá)地球后,為了及時(shí)將航天員安全救出,地面指揮中心在返回艙預(yù)計(jì)到達(dá)區(qū)域安排了三個(gè)救援中心(記A,B,C),A在B的正東方向,相距6千米,C在B的北偏西30方向,相距4千米,P為航天員著陸點(diǎn).某一時(shí)刻,A接收到P的求救信號(hào),由于B,C兩地比A距P遠(yuǎn),在此4秒后,B,C兩個(gè)救援中心才同時(shí)接收到這一信號(hào).已知該信號(hào)的傳播速度為1千米/秒,求在A處發(fā)現(xiàn)P的方位角.

解:因?yàn)閨PC|=|PB|,所以P在線段BC的垂直平分線上.

又因?yàn)閨PB|-|PA|=4<6=|AB|,

所以P在以A,B為焦點(diǎn)的雙曲線的右支上.

以線段AB的中點(diǎn)為坐標(biāo)原點(diǎn),AB的垂直平分線所在直線為y軸,正東方向?yàn)閤軸正方向建立平面直角坐標(biāo)系,如圖所示.

則A(3,0),B(-3,0),C(-5,2).

所以雙曲線方程為=1(x>2),

BC的垂直平分線方程為x-y+7=0.

聯(lián)立兩方程解得x=8(舍負(fù)),y=5, 所以P(8,5),

kPA=tan∠PAx=,所以∠PAx=60,

所以P點(diǎn)在A點(diǎn)的北偏東30方向.

通過(guò)實(shí)際問(wèn)題,引導(dǎo)學(xué)生類比思考,引出雙曲線的定義。發(fā)展學(xué)生數(shù)學(xué)抽象,直觀想象的核心素養(yǎng)。

類比橢圓的標(biāo)準(zhǔn)方程推導(dǎo),運(yùn)用雙曲線定義推導(dǎo)其標(biāo)準(zhǔn)方程。發(fā)展學(xué)生數(shù)學(xué)抽象,數(shù)學(xué)運(yùn)算,直觀想象的核心素養(yǎng)。

三、達(dá)標(biāo)檢測(cè)

1.已知兩定點(diǎn)F1(-5,0),F2(5,0),動(dòng)點(diǎn)P滿足|PF1|-|PF2|=2a,則當(dāng)a=3和5時(shí),P點(diǎn)的軌跡為( )

A.雙曲線和一條直線

B.雙曲線和一條射線

C.雙曲線的一支和一條直線

D.雙曲線的一支和一條射線

解析:當(dāng)a=3時(shí),根據(jù)雙曲線的定義及|PF1|>|PF2|可推斷出其軌跡是雙曲線的一支.當(dāng)a=5時(shí),方程y2=0,可知其軌跡與x軸重合,舍去在x軸負(fù)半軸上的一段,又因?yàn)閨PF1|-|PF2|=2a,說(shuō)明|PF1|>|PF2|,所以應(yīng)該是起點(diǎn)為(5,0),與x軸重合向x軸正方向延伸的射線.

答案:D

2.已知雙曲線=1(a>0,b>0),F1,F2為其兩個(gè)焦點(diǎn),若過(guò)焦點(diǎn)F1的直線與雙曲線的同一支相交,且所得弦長(zhǎng)|AB|=m,則△ABF2的周長(zhǎng)為( )

A.4a B.4a-m C.4a+2m D.4a-2m

解析:不妨設(shè)|AF2|>|AF1|,由雙曲線的定義,知|AF2|-|AF1|=2a,|BF2|-|BF1|=2a,所以|AF2|+|BF2|=(|AF1|+|BF1|)+4a=m+4a,于是△ABF2的周長(zhǎng)l=|AF2|+|BF2|+|AB|=4a+2m.故選C.

答案:C

3.已知方程=1表示雙曲線,則m的取值范圍是( )

A.(-1,+∞) B.(2,+∞) C.(-∞,-1)∪(2,+∞) D.(-1,2)

解析:∵方程=1,∴(m-2)(m+1)<0,

解得-1

答案:D

4. 一塊面積為12公頃的三角形形狀的農(nóng)場(chǎng).如圖所示△PEF,已知tan∠PEF=,tan∠PFE=-2,試建立適當(dāng)直角坐標(biāo)系,求出分別以E,F為左、右焦點(diǎn)且過(guò)點(diǎn)P的雙曲線方程.

解:以E,F所在直線為x軸,EF的垂直平分線為y軸建立直角坐標(biāo)系,如圖.設(shè)以E,F為焦點(diǎn)且過(guò)點(diǎn)P的雙曲線方程為=1,

焦點(diǎn)為E(-c,0),F(c,0). 由tan∠PEF=,tan∠EFP=-2,

設(shè)∠PFx=α,則tan α=tan(π-∠EFP)=2,

得直線PE和直線PF的方程分別為y=(x+c)和y=2(x-c).

聯(lián)立兩方程,解得x=c,y=c, 即P點(diǎn)坐標(biāo)為.

∵在△EFP中,|EF|=2c,EF上的高為點(diǎn)P的縱坐標(biāo),

∴S△EFP=c2=12,∴c=3,即P點(diǎn)坐標(biāo)為(5,4).

由兩點(diǎn)間的距離公式

|PE|==4,|PF|==2,

∴a=.又b2=c2-a2=4,

故所求雙曲線的方程為=1.

5.求適合下列條件的雙曲線的標(biāo)準(zhǔn)方程.

(1)兩個(gè)焦點(diǎn)的坐標(biāo)分別是(-5,0),(5,0),雙曲線上的點(diǎn)與兩焦點(diǎn)的距離之差的絕對(duì)值等于8;

(2)以橢圓=1長(zhǎng)軸的端點(diǎn)為焦點(diǎn),且經(jīng)過(guò)點(diǎn)(3,);

(3)a=b,經(jīng)過(guò)點(diǎn)(3,-1).

解:(1)由雙曲線的定義知,2a=8,所以a=4,又知焦點(diǎn)在x軸上,且c=5,

所以b2=c2-a2=25-16=9,所以雙曲線的標(biāo)準(zhǔn)方程為=1.

(2)由題意得,雙曲線的焦點(diǎn)在x軸上,且c=2.

設(shè)雙曲線的標(biāo)準(zhǔn)方程為=1(a>0,b>0),

則有a2+b2=c2=8,=1,解得a2=3,b2=5.

故所求雙曲線的標(biāo)準(zhǔn)方程為=1.

(3)當(dāng)焦點(diǎn)在x軸上時(shí),可設(shè)雙曲線方程為x2-y2=a2,將點(diǎn)(3,-1)代入,

得32-(-1)2=a2,所以a2=b2=8.因此,所求的雙曲線的標(biāo)準(zhǔn)方程為=1.當(dāng)焦點(diǎn)在y軸上時(shí),可設(shè)雙曲線方程為y2-x2=a2,將點(diǎn)(3,-1)代入,得(-1)2-32=a2,a2=-8,不可能,所以焦點(diǎn)不可能在y軸上.

綜上,所求雙曲線的標(biāo)準(zhǔn)方程為=1.

通過(guò)練習(xí)鞏固本節(jié)所學(xué)知識(shí),通過(guò)學(xué)生解決問(wèn)題,發(fā)展學(xué)生的數(shù)學(xué)運(yùn)算、邏輯推理、直觀想象、數(shù)學(xué)建模的核心素養(yǎng)。


最新課件教案文檔
  • 精選高中生期末評(píng)語(yǔ)

    精選高中生期末評(píng)語(yǔ)

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    公司2024第一季度意識(shí)形態(tài)工作聯(lián)席會(huì)議總結(jié)

    一是要把好正確導(dǎo)向。嚴(yán)格落實(shí)主體責(zé)任,逐條逐項(xiàng)細(xì)化任務(wù),層層傳導(dǎo)壓力。要抓實(shí)思想引領(lǐng),把理論學(xué)習(xí)貫穿始終,全身心投入主題教育當(dāng)中;把理論學(xué)習(xí)、調(diào)查研究、推動(dòng)發(fā)展、檢視整改等有機(jī)融合、一體推進(jìn);堅(jiān)持學(xué)思用貫通、知信行統(tǒng)一,努力在以學(xué)鑄魂、以學(xué)增智、以學(xué)正風(fēng)、以學(xué)促干方面取得實(shí)實(shí)在在的成效。更加深刻領(lǐng)會(huì)到******主義思想的科學(xué)體系、核心要義、實(shí)踐要求,進(jìn)一步堅(jiān)定了理想信念,錘煉了政治品格,增強(qiáng)了工作本領(lǐng),要自覺(jué)運(yùn)用的創(chuàng)新理論研究新情況、解決新問(wèn)題,為西北礦業(yè)高質(zhì)量發(fā)展作出貢獻(xiàn)。二是要加強(qiáng)應(yīng)急處事能力。認(rèn)真組織開(kāi)展好各類理論宣講和文化活動(dòng),發(fā)揮好基層ys*t陣地作用,加強(qiáng)分析預(yù)警和應(yīng)對(duì)處置能力,提高發(fā)現(xiàn)力、研判力、處置力,起到穩(wěn)定和引導(dǎo)作用。要堅(jiān)決唱響主旋律,為“打造陜甘片區(qū)高質(zhì)量發(fā)展標(biāo)桿礦井”、建設(shè)“七個(gè)一流”能源集團(tuán)和“精優(yōu)智特”新淄礦營(yíng)造良好的輿論氛圍。三是加強(qiáng)輿情的搜集及應(yīng)對(duì)。加強(qiáng)職工群眾熱點(diǎn)問(wèn)題的輿論引導(dǎo),做好輿情的收集、分析和研判,把握時(shí)、度、效,重視網(wǎng)上和網(wǎng)下輿情應(yīng)對(duì)。

  • 關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    關(guān)于2024年上半年工作總結(jié)和下半年工作計(jì)劃

    二是深耕意識(shí)形態(tài)。加強(qiáng)意識(shí)形態(tài)、網(wǎng)絡(luò)輿論陣地建設(shè)和管理,把握重大時(shí)間節(jié)點(diǎn),科學(xué)分析研判意識(shí)形態(tài)領(lǐng)域情況,旗幟鮮明反對(duì)和抵制各種錯(cuò)誤觀點(diǎn),有效防范處置風(fēng)險(xiǎn)隱患。積極響應(yīng)和高效落實(shí)上級(jí)黨委的決策部署,確保執(zhí)行不偏向、不變通、不走樣。(二)全面深化黨的組織建設(shè),鍛造堅(jiān)強(qiáng)有力的基層黨組織。一是提高基層黨組織建設(shè)力量。壓實(shí)黨建責(zé)任,從政治高度檢視分析黨建工作短板弱項(xiàng),有針對(duì)性提出改進(jìn)工作的思路和辦法。持續(xù)優(yōu)化黨建考核評(píng)價(jià)體系。二是縱深推進(jìn)基層黨建,打造堅(jiān)強(qiáng)戰(zhàn)斗堡壘。創(chuàng)新實(shí)施黨建工作模式,繼續(xù)打造黨建品牌,抓實(shí)“五強(qiáng)五化”黨組織創(chuàng)建,廣泛開(kāi)展黨員教育學(xué)習(xí)活動(dòng),以實(shí)際行動(dòng)推動(dòng)黨建工作和經(jīng)營(yíng)發(fā)展目標(biāo)同向、部署同步、工作同力。三是加強(qiáng)高素質(zhì)專業(yè)化黨員隊(duì)伍管理。配齊配強(qiáng)支部黨務(wù)工作者,把黨務(wù)工作崗位作為培養(yǎng)鍛煉干部的重要平臺(tái)。

  • XX區(qū)民政局黨支部開(kāi)展主題教育工作情況總結(jié)報(bào)告

    XX區(qū)民政局黨支部開(kāi)展主題教育工作情況總結(jié)報(bào)告

    二要專注于解決問(wèn)題。根據(jù)市委促進(jìn)經(jīng)濟(jì)轉(zhuǎn)型的總要求,聚焦“四個(gè)經(jīng)濟(jì)”和“雙中心”的建設(shè),深入了解基層科技工作、學(xué)術(shù)交流、組織建設(shè)等方面的實(shí)際情況,全面了解群眾的真實(shí)需求,解決相關(guān)問(wèn)題,并針對(duì)科技工作中存在的問(wèn)題,采取實(shí)際措施,推動(dòng)問(wèn)題的實(shí)際解決。三要專注于急難愁盼問(wèn)題。優(yōu)化“民聲熱線”,推動(dòng)解決一系列基層民生問(wèn)題,努力將“民聲熱線”打造成主題教育的關(guān)鍵工具和展示平臺(tái)。目前,“民聲熱線”已回應(yīng)了群眾的8個(gè)政策問(wèn)題,并成功解決其中7個(gè)問(wèn)題,真正使人民群眾感受到了實(shí)質(zhì)性的變化和效果。接下來(lái),我局將繼續(xù)深入學(xué)習(xí)主題教育的精神,借鑒其他單位的優(yōu)秀經(jīng)驗(yàn)和方法,以更高的要求、更嚴(yán)格的紀(jì)律、更實(shí)際的措施和更好的成果,不斷深化主題教育的實(shí)施,展現(xiàn)新的風(fēng)貌和活力。

  • 交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    交通運(yùn)輸局在巡回指導(dǎo)組主題教育階段性工作總結(jié)推進(jìn)會(huì)上的匯報(bào)發(fā)言

    今年3月,市政府出臺(tái)《關(guān)于加快打造更具特色的“水運(yùn)XX”的意見(jiàn)》,提出到2025年,“蘇南運(yùn)河全線達(dá)到準(zhǔn)二級(jí),實(shí)現(xiàn)2000噸級(jí)舶全天候暢行”。作為“水運(yùn)XX”建設(shè)首戰(zhàn),諫壁閘一線閘擴(kuò)容工程開(kāi)工在即,但項(xiàng)目開(kāi)工前還有許多實(shí)際問(wèn)題亟需解決。結(jié)合“到一線去”專項(xiàng)行動(dòng),我們深入到諫壁閘一線,詳細(xì)了解工程前期進(jìn)展,實(shí)地察看諫壁閘周邊環(huán)境和舶通航情況,不斷完善施工設(shè)計(jì)方案。牢牢把握高質(zhì)量發(fā)展這個(gè)首要任務(wù),在學(xué)思踐悟中開(kāi)創(chuàng)建功之業(yè),堅(jiān)定扛起“走在前、挑大梁、多做貢獻(xiàn)”的交通責(zé)任,奮力推動(dòng)交通運(yùn)輸高質(zhì)量發(fā)展持續(xù)走在前列。以學(xué)促干建新功,關(guān)鍵在推動(dòng)高質(zhì)量發(fā)展持續(xù)走在前列。新時(shí)代中國(guó)特色社會(huì)主義思想著重強(qiáng)調(diào)立足新發(fā)展階段、貫徹新發(fā)展理念、構(gòu)建新發(fā)展格局,推動(dòng)高質(zhì)量發(fā)展,提出了新發(fā)展階段我國(guó)經(jīng)濟(jì)高質(zhì)量發(fā)展要堅(jiān)持的主線、重大戰(zhàn)略目標(biāo)、工作總基調(diào)和方法論等,深刻體現(xiàn)了這一思想的重要實(shí)踐價(jià)值。

  • XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    XX區(qū)文旅體局2023年工作總結(jié) 及2024年工作安排

    三、2024年工作計(jì)劃一是完善基層公共文化服務(wù)管理標(biāo)準(zhǔn)化模式,持續(xù)在公共文化服務(wù)精準(zhǔn)化上探索創(chuàng)新,圍繞群眾需求,不斷調(diào)整公共文化服務(wù)內(nèi)容和形式,提升群眾滿意度。推進(jìn)鄉(xiāng)鎮(zhèn)(街道)“114861”工程和農(nóng)村文化“121616”工程,加大已開(kāi)展活動(dòng)的上傳力度,確保年度目標(biāo)任務(wù)按時(shí)保質(zhì)保量完成。服務(wù)“雙減”政策,持續(xù)做好校外培訓(xùn)機(jī)構(gòu)審批工作,結(jié)合我區(qū)工作實(shí)際和文旅資源優(yōu)勢(shì),進(jìn)一步豐富我市義務(wù)教育階段學(xué)生“雙減”后的課外文化生活,推動(dòng)“雙減”政策走深走實(shí)。二是結(jié)合文旅產(chǎn)業(yè)融合發(fā)展示范區(qū),全力推進(jìn)全域旅游示范區(qū)創(chuàng)建,嚴(yán)格按照《國(guó)家全域旅游示范區(qū)驗(yàn)收標(biāo)準(zhǔn)》要求,極推動(dòng)旅游產(chǎn)品全域布局、旅游要素全域配置、旅游設(shè)施全域優(yōu)化、旅游產(chǎn)業(yè)全域覆蓋。

今日更新Word
  • 精選高中生期末評(píng)語(yǔ)

    精選高中生期末評(píng)語(yǔ)

    1、該生學(xué)習(xí)態(tài)度端正 ,能夠積極配合老師 ,善于調(diào)動(dòng)課堂氣氛。 能夠積極完成老師布置的任務(wù)。學(xué)習(xí)勁頭足,聽(tīng)課又專注 ,做事更認(rèn) 真 ,你是同學(xué)們學(xué)習(xí)的榜樣。但是,成績(jī)只代表昨天,并不能說(shuō)明你 明天就一定也很優(yōu)秀。所以,每個(gè)人都應(yīng)該把成績(jī)當(dāng)作自己騰飛的起 點(diǎn)。2、 你不愛(ài)說(shuō)話 ,但勤奮好學(xué),誠(chéng)實(shí)可愛(ài);你做事踏實(shí)、認(rèn)真、為 人忠厚 ,是一個(gè)品行端正、有上進(jìn)心、有良好的道德修養(yǎng)的好學(xué)生。在學(xué)習(xí)上,積極、主動(dòng),能按時(shí)完成老師布置的作業(yè),經(jīng)過(guò)努力 ,各 科成績(jī)都有明顯進(jìn)步,你有較強(qiáng)的思維能力和學(xué)習(xí)領(lǐng)悟力,學(xué)習(xí)也有 計(jì)劃性,但在老師看來(lái),你的潛力還沒(méi)有完全發(fā)揮出來(lái),學(xué)習(xí)上還要有持久的恒心和頑強(qiáng)的毅力。

  • 5月份主題教育工作情況總結(jié)匯報(bào)

    5月份主題教育工作情況總結(jié)匯報(bào)

    一是XX單位下轄的部分黨支部和黨員干部個(gè)人的自我檢視不夠,特別是抓整改的措施落實(shí)得還不夠全面,還有一些問(wèn)題沒(méi)有得到完全徹底解決。二是調(diào)查研究的不足。部分黨員聯(lián)系實(shí)際、聯(lián)系自身工作作風(fēng)不夠緊密,少數(shù)黨員干部政治敏銳性和鑒別力也有待進(jìn)一步提高。三、下一步工作打算在下一步工作中,我們將突出問(wèn)題導(dǎo)向,采取積極有效措施徹底解決以上存在的問(wèn)題,確保主題教育實(shí)現(xiàn)預(yù)期目標(biāo)。一是進(jìn)一步提升抓好主題教育的主動(dòng)性和自覺(jué)性。教育引導(dǎo)xx單位全體黨員干部要深入貫徹xxx總書(shū)記的要求,持之以恒,發(fā)揚(yáng)“釘釘子”精神,一錘一錘接著敲,直到把釘子釘實(shí)釘牢。二是主動(dòng)運(yùn)用主題教育成果推進(jìn)中心工作。積極引導(dǎo)廣大黨員堅(jiān)定地與上級(jí)黨委保持高度一致,把統(tǒng)一思想、提高認(rèn)識(shí)擺在特別重要的位置,深入學(xué)習(xí)、準(zhǔn)確理解群眾路線理論觀點(diǎn),圍繞省委高質(zhì)量發(fā)展目標(biāo)任務(wù),扎扎實(shí)實(shí)推進(jìn)中心工作。

  • ××縣招商局2024年上半年工作總結(jié)

    ××縣招商局2024年上半年工作總結(jié)

    二是全力推進(jìn)在談項(xiàng)目落地。認(rèn)真落實(shí)“首席服務(wù)官”責(zé)任制,切實(shí)做好上海中道易新材料有機(jī)硅復(fù)配硅油項(xiàng)目、海南中顧垃圾焚燒發(fā)電爐渣綜合利用項(xiàng)目、天勤生物生物實(shí)驗(yàn)基地項(xiàng)目、愷德集團(tuán)文旅康養(yǎng)產(chǎn)業(yè)項(xiàng)目、三一重能風(fēng)力發(fā)電項(xiàng)目、中國(guó)供銷(xiāo)集團(tuán)冷鏈物流項(xiàng)目跟蹤對(duì)接,協(xié)調(diào)解決項(xiàng)目落戶過(guò)程中存在的困難和問(wèn)題,力爭(zhēng)早日實(shí)現(xiàn)成果轉(zhuǎn)化。三是強(qiáng)化招商工作考核督辦。持續(xù)加大全縣招商引資工作統(tǒng)籌調(diào)度及業(yè)務(wù)指導(dǎo),貫徹落實(shí)項(xiàng)目建設(shè)“6421”時(shí)限及“每月通報(bào)、季度排名、半年分析、年終獎(jiǎng)勵(lì)”相關(guān)要求,通過(guò)“比實(shí)績(jī)、曬單子、亮數(shù)據(jù)、拼項(xiàng)目”,進(jìn)一步營(yíng)造“比學(xué)趕超”濃厚氛圍,掀起招商引資和項(xiàng)目建設(shè)新熱潮。四是持續(xù)優(yōu)化園區(qū)企業(yè)服務(wù)。

  • ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    ×××公安局機(jī)關(guān)黨委上半年黨建工作總結(jié)

    (五)實(shí)施融合促進(jìn)工程,切實(shí)發(fā)揮黨建引領(lǐng)高質(zhì)量發(fā)展作用。堅(jiān)持推動(dòng)黨建與業(yè)務(wù)工作深度融合,堅(jiān)持黨建和業(yè)務(wù)工作一起謀劃、一起部署、一起落實(shí)、一起檢查。一是在服務(wù)大局中全力作為。按照市局《關(guān)于加強(qiáng)黨建引領(lǐng)“警地融合”推動(dòng)基層治理體系和治理能力現(xiàn)代化的實(shí)施意見(jiàn)》,組織開(kāi)展“我為群眾辦實(shí)事”“雙報(bào)到”實(shí)踐活動(dòng)300余次。邀請(qǐng)市人大代表、政協(xié)委員、黨風(fēng)政風(fēng)警風(fēng)監(jiān)督員參加市局“向黨和人民報(bào)告”警營(yíng)開(kāi)放日活動(dòng),在黨建引領(lǐng)、安保維穩(wěn)、執(zhí)法辦案、保護(hù)群眾中涌現(xiàn)出來(lái)的忠誠(chéng)擔(dān)當(dāng)、清正廉潔、無(wú)私奉獻(xiàn)的,選樹(shù)28名優(yōu)秀共產(chǎn)黨員、15名優(yōu)秀黨務(wù)工作者、8個(gè)先進(jìn)基層黨組織,充分發(fā)揮正向激勵(lì)作用,營(yíng)造學(xué)習(xí)典型、爭(zhēng)做典型、弘揚(yáng)典型精神的濃厚氛圍。二是強(qiáng)化暖警惠警措施。

  • 《2019—2024年全國(guó)黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    《2019—2024年全國(guó)黨政領(lǐng)導(dǎo)班子建設(shè)規(guī)劃綱要》實(shí)施情況的工作總結(jié)3800字

    一是及時(shí)傳達(dá)學(xué)習(xí)xxx總書(shū)記重要指示精神。堅(jiān)持把學(xué)習(xí)貫徹xxx總書(shū)記關(guān)于加強(qiáng)領(lǐng)導(dǎo)班子建設(shè)、培養(yǎng)選拔優(yōu)秀年輕干部等重要指示精神作為重大政治任務(wù),局黨組會(huì)及時(shí)傳達(dá)學(xué)習(xí),并就貫徹落實(shí)指示精神提出具體措施,扎實(shí)抓好我局領(lǐng)導(dǎo)班子和干部隊(duì)伍建設(shè),以實(shí)際工作業(yè)績(jī)彰顯學(xué)習(xí)貫徹成效。二是加強(qiáng)領(lǐng)導(dǎo)班子分析研判。堅(jiān)持把考察了解班子和干部的功夫下在平時(shí),定期開(kāi)展領(lǐng)導(dǎo)班子和領(lǐng)導(dǎo)干部分析研判工作,重點(diǎn)了解班子運(yùn)行、整體結(jié)構(gòu)、優(yōu)化方向等情況,聽(tīng)取干部群眾對(duì)班子和干部的評(píng)價(jià),掌握班子成員個(gè)人思想動(dòng)態(tài)和意愿訴求。同時(shí),將研判中發(fā)現(xiàn)的政治堅(jiān)定、敢于擔(dān)當(dāng)、群眾認(rèn)可的優(yōu)秀年輕干部納入選人用人視野,切實(shí)做好干部?jī)?chǔ)備。三是全面收集掌握干部表現(xiàn)。嚴(yán)格落實(shí)干部監(jiān)督工作聯(lián)席會(huì)議制度,定期與紀(jì)檢、公檢法、信訪、審計(jì)等部門(mén)溝通信息,注重掌握干部負(fù)面信息,并進(jìn)行分析研判。

  • “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    “轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng)階段性工作總結(jié)

    2024年是XX油田剛性推進(jìn)“三年一盤(pán)棋”整體部署落地的基礎(chǔ)年,也是走穩(wěn)“三步走”戰(zhàn)略實(shí)現(xiàn)轉(zhuǎn)型發(fā)展的重要一年,更是工程技術(shù)服務(wù)公司堅(jiān)持低成本戰(zhàn)略、發(fā)展特色工程技術(shù)的關(guān)鍵一年。站在新起點(diǎn),邁向新征程,公司既面對(duì)難得發(fā)展機(jī)遇,也面臨不少風(fēng)險(xiǎn)挑戰(zhàn)。開(kāi)展“轉(zhuǎn)觀念、勇?lián)?dāng)、新征程、創(chuàng)一流”主題教育活動(dòng),就是教育引導(dǎo)廣大干部員工全面學(xué)習(xí)貫徹xxx新時(shí)代中國(guó)特色社會(huì)主義思想和黨的XX大精神,全面貫徹落實(shí)中油集團(tuán)公司2024年工作會(huì)議和油田公司、公司“兩會(huì)”各項(xiàng)工作部署,始終不忘“我為祖國(guó)獻(xiàn)石油”的初心,深刻認(rèn)識(shí)油氣產(chǎn)量是“端牢能源飯碗”的責(zé)任擔(dān)當(dāng),著力更新發(fā)展理念、變革發(fā)展模式,抓住當(dāng)前內(nèi)外部利好機(jī)遇,堅(jiān)定“服務(wù)油田開(kāi)發(fā)”主導(dǎo)思想不動(dòng)搖,圍繞“12345”發(fā)展戰(zhàn)略,推動(dòng)服務(wù)水平再提檔、再升級(jí),加快建設(shè)創(chuàng)新型可持續(xù)發(fā)展的工程技術(shù)服務(wù)公司。